题目内容
如图,在三棱柱ABC—A1B1C1中,四边形A1ABB1是菱形,四边形BCC1B1是矩形,AB⊥BC,CB=3,AB=4,∠A1AB=60°。
(1)求证:平面CA1B⊥平面A1ABB1;
|
(3)求点C1到平面A1CB的距离。
|
|
|
|
|
|
【答案】
(1)证:因为四边形BCC1B1是矩形,∴BC⊥BB1,又∵AB⊥BC,∴BC⊥平面A1ABB1。∵BC平面CA1B,∴平面CA1B⊥平面A1ABB1。
(2)解:过A1作A1D⊥B1B于D,连接DC,∵BC⊥平面A1ABB1,
∴BC⊥A1D,∴A1D⊥平面BCC1B1,故∠A1CD为直线A1C与平面BCC1B1所成的角。∵CB=3,AB=4,∴A1D=,∴tan∠A1CD=
(3)∵B1C1∥BC1,∴B1C1∥平面A1BC,∴C1到平面A1BC的距离即为B1到平面A1BC的距离。连结AB1,AB1与A1B交于点O,∵四边形A1ABB1是菱形,∴B1O⊥A1B,∵CA1B⊥平面A1ABB1,∴B1O⊥平面A1BC,∴B1O即为C1到平面A1BC的距离。∵B1O=,∴C1到平面A1BC的距离为。
练习册系列答案
相关题目
如图,在三棱柱ABC-A'B'C'中,若E、F分别为AB、AC的中点,平面EB'C'F将三棱柱分成体积为V1、V2的两部分,那么V1:V2为( )
A、3:2 | B、7:5 | C、8:5 | D、9:5 |