题目内容

曲线在矩阵的变换作用下得到曲线
(Ⅰ)求矩阵
(Ⅱ)求矩阵的特征值及对应的一个特征向量.

(Ⅰ)矩阵;(Ⅱ)矩阵的特征值.当时,对应的特征向量为;当时,对应的特征向量为

解析试题分析:(Ⅰ)首先设曲线上的任一点在矩阵对应的变换作用下所得的点为,则由可得再由点在曲线上,把代入求得的值,即可得矩阵;(Ⅱ)由,可得矩阵的特征值,根据特征向量的求法,分别列出方程组,即可求得其对应的特征向量.
试题解析:(Ⅰ)设曲线上的任一点在矩阵对应的变换作用下所得的点为,则由点在曲线上,得再由,解得.3分
(Ⅱ)由,解得:. 5分
时,由得对应的特征向量为;当时,由得对应的特征向量为.7分
考点:1.矩阵与变换;2.矩阵的特征值及对应的一个特征向量的计算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网