题目内容
1.某车间计划全年完成产值60万元,前3个季度完成43.45万元,如果10月份的产值是5万元,那么后两个月的月平均增长率应该是多少,才能超额完成年产值计划?分析 通过设后两个月的月平均增长率为x,进而解不等式5+5(1+x)+5(1-x)2+43.45>60即得结论.
解答 解:设后两个月的月平均增长率为x,
则5+5(1+x)+5(1-x)2+43.45>60,
整理得:x2+3x-0.31>0,
解得:x>0.1或x<-3.1(舍),
答:后两个月的月平均增长率在10%以上才能超额完成年产值计划.
点评 本题是一道关于一元二次不等式的简单应用题,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
11.正三棱柱被一个平面截去一部分后与半圆柱组成一个几何体,该几何体的三视图如图所示,则该几何体的表面积为( )
A. | 3π+4+$\sqrt{3}$+$\sqrt{7}$ | B. | 3π+6+$\sqrt{3}$ | C. | 2π+4+$\sqrt{3}$$+\sqrt{7}$ | D. | 2π+6$+\sqrt{3}$ |
9.双曲线C;$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0))的左右焦点分别为F1,F2,双曲线C上一点P到右焦点F2的距离是实轴两端点到右焦点距离的等差中项,若△PF1F2为锐角三角形,则双曲线C的离心率的取值范围是( )
A. | ($\frac{1+\sqrt{5}}{2}$,+∞) | B. | (1,1+$\sqrt{3}$) | C. | ($\frac{1+\sqrt{5}}{2}$,1+$\sqrt{3}$) | D. | ($\frac{1+\sqrt{5}}{2}$,2)∪(2,1+$\sqrt{3}$) |
10.已知$\overrightarrow{a}$=(5,6),$\overrightarrow{b}$=(sinα,cosα),已知向量且$\overrightarrow{a}$∥$\overrightarrow{b}$,则tanα=( )
A. | $\frac{5}{6}$ | B. | -$\frac{5}{6}$ | C. | $\frac{6}{5}$ | D. | -$\frac{6}{5}$ |