题目内容

已知在平面直角坐标系xoy中,向量
j
=(0,1),△OFP的面积为2
3
,且
OF
FP
=t,
OM
=
3
3
OP
+
j

(I)设4<t<4
3
,求向量
OF
FP
的夹角θ
的取值范围;
(II)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且|
OF
|=c,t=(
3
-1)c2,当|
OP
|
取最小值时,求椭圆的方程.
分析:(1)由2
3
=
1
2
|
OF
|
•|FP|•sinθ,得|
OF
|•|
FP
|
=
4
3
sinθ
,由cosθ=
OF
FP
|
OF
|•|
FP
|
=
tsinθ
4
3
,得tanθ=
4
3
t
.
由此可求出夹角θ的取值范围.
(2)设P(x0y0),则
FP
(x0-c,y0),
OF
=(c,0).
由题设条件导出|
OP
|=
x
2
0
+
y
2
0
=
(
3
c)
2
+(
4
3
c
)
2
2
3
c•
4
3
c
=2
6
,由此可求出椭圆的方程.
解答:解:(1)由2
3
=
1
2
|
OF
|
•|FP|•sinθ,得|
OF
|•|
FP
|
=
4
3
sinθ

由cosθ=
OF
FP
|
OF
|•|
FP
|
=
tsinθ
4
3
,得tanθ=
4
3
t
.

4<t<4
3
∴1<tanθ<
3
∵θ∈[0,π]

∴夹角θ的取值范围是(
π
4
π
3

(2)设P(x0y0),则
FP
(x0-c,y0),
OF
=(c,0).
OF
FP
=(x0-c,y0)•(c,0)=(x0-c)c=t=(
3
-1)c2x0=
3
c

S△OFP=
1
2
|
OF
|•|y0|=2
3
y0
4
3
c

|
OP
|=
x
2
0
+
y
2
0
=
(
3
c)
2
+(
4
3
c
)
2
2
3
c•
4
3
c
=2
6

∴当且仅当
3
c=
4
3
c
,即c=2时,|
OP
|取最小值2
6
,此时,
OP
=(2
3
,±2
3
)

OM
=
3
3
(2
3
,2
3
)+(0,1)=(2,3)

OM
=
3
3
(2
3
,-2
3
)+(0,1)=(2,-1)

椭圆长轴2a=
(2-2)2+(3-0)2
+
(2+2)2+(3-0)2
=8∴a=4,b2=12

2a=
(2-2)2+(-1-0)2
+
(2+2)2+(-1-0)2
=1+
17
∴a=
1+
17
2
b2=
1+
17
2

故所求椭圆方程为
x2
16
+
y2
12
=1

x2
9+
17
2
+
y2
1+
17
2
=1
点评:本题综合考查椭圆的性质及其应用,解题要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网