题目内容
已知在平面直角坐标系xoy中,向量j |
3 |
OF |
FP |
OM |
| ||
3 |
OP |
j |
(I)设4<t<4
3 |
OF |
FP |
(II)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且|
OF |
3 |
OP |
分析:(1)由2
=
|
|•|FP|•sinθ,得|
|•|
|=
,由cosθ=
=
,得tanθ=
.由此可求出夹角θ的取值范围.
(2)设P(x0,y0),则
(x0-c,y0),
=(c,0).由题设条件导出|
|=
=
≥
=2
,由此可求出椭圆的方程.
3 |
1 |
2 |
OF |
OF |
FP |
4
| ||
sinθ |
| ||||
|
|
tsinθ | ||
4
|
4
| ||
t |
(2)设P(x0,y0),则
FP |
OF |
OP |
|
(
|
2
|
6 |
解答:解:(1)由2
=
|
|•|FP|•sinθ,得|
|•|
|=
,
由cosθ=
=
,得tanθ=
.
∵4<t<4
∴1<tanθ<
∵θ∈[0,π]
∴夹角θ的取值范围是(
,
)
(2)设P(x0,y0),则
(x0-c,y0),
=(c,0).∴
•
=(x0-c,y0)•(c,0)=(x0-c)c=t=(
-1)c2∴x0=
c
S△OFP=
|
|•|y0|=2
∴y0=±
∴|
|=
=
≥
=2
∴当且仅当
c=
,即c=2时,|
|取最小值2
,此时,
=(2
,±2
)
∴
=
(2
,2
)+(0,1)=(2,3)
或
=
(2
,-2
)+(0,1)=(2,-1)
椭圆长轴2a=
+
=8∴a=4,b2=12
或2a=
+
=1+
∴a=
,b2=
故所求椭圆方程为
+
=1.
或
+
=1
3 |
1 |
2 |
OF |
OF |
FP |
4
| ||
sinθ |
由cosθ=
| ||||
|
|
tsinθ | ||
4
|
4
| ||
t |
∵4<t<4
3 |
3 |
∴夹角θ的取值范围是(
π |
4 |
π |
3 |
(2)设P(x0,y0),则
FP |
OF |
OF |
FP |
3 |
3 |
S△OFP=
1 |
2 |
OF |
3 |
4
| ||
c |
∴|
OP |
|
(
|
2
|
6 |
∴当且仅当
3 |
4
| ||
c |
OP |
6 |
OP |
3 |
3 |
∴
OM |
| ||
3 |
3 |
3 |
或
OM |
| ||
3 |
3 |
3 |
椭圆长轴2a=
(2-2)2+(3-0)2 |
(2+2)2+(3-0)2 |
或2a=
(2-2)2+(-1-0)2 |
(2+2)2+(-1-0)2 |
17 |
1+
| ||
2 |
1+
| ||
2 |
故所求椭圆方程为
x2 |
16 |
y2 |
12 |
或
x2 | ||||
|
y2 | ||||
|
点评:本题综合考查椭圆的性质及其应用,解题要认真审题,仔细解答.
练习册系列答案
相关题目