题目内容
已知向量
,
满足则|
|=2,|
|=
,
+
=(
,1),则|
-
|=
.
a |
b |
a |
b |
3 |
a |
b |
3 |
a |
b |
10 |
10 |
分析:利用向量的数量积运算即可得出.
解答:解:∵|
|=2,|
|=
,
+
=(
,1),∴|
+
|=
=2.
∴(
+
)2=
2+
2+2
•
=22,
∴4=22+(
)2+2
•
,解得
•
=-
.
∴|
-
|=
=
=
=
.
故答案为
.
a |
b |
3 |
a |
b |
3 |
a |
b |
(
|
∴(
a |
b |
a |
b |
a |
b |
∴4=22+(
3 |
a |
b |
a |
b |
3 |
2 |
∴|
a |
b |
(
|
|
22+(
|
10 |
故答案为
10 |
点评:熟练掌握向量的数量积运算是解题的关键.
练习册系列答案
相关题目
已知向量
,
满足|
|=1,|
|=2,设m=|2
-
|,若不等式(m-4)x2>1的解集为空集,则m的取值区间是( )
a |
b |
a |
b |
b |
a |
A、[1,3] |
B、[2,4] |
C、[3,4] |
D、[3,5] |