题目内容

6.计算${∫}_{0}^{1}$(x+1)exdx=e.

分析 根据(xex)′=xex+ex,即可求出原函数,再根据定积分的计算法则计算即可.

解答 解:${∫}_{0}^{1}$(x+1)exdx=${∫}_{0}^{1}$(xex+ex)dx=(xex)|${\;}_{0}^{1}$=e
故答案为:e.

点评 本题考查了定积分的计算,关键是求出原函数,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网