题目内容
(本小题满分12分)
如图,在四棱柱中,底面是等腰梯形,,,是线段的中点.
(Ⅰ)求证:;
(Ⅱ)若垂直于平面且,求平面和平面所成的角(锐角)的余弦值.
如图,在四棱柱中,底面是等腰梯形,,,是线段的中点.
(Ⅰ)求证:;
(Ⅱ)若垂直于平面且,求平面和平面所成的角(锐角)的余弦值.
(I)证明:见解析;(II)平面和平面ABCD所成角(锐角)的余弦值为.
试题分析:(I)由四边形ABCD是等腰梯形,且,
可得且.
连接,可得,
从而得到四边形为平行四边形,
进一步可得平面.
(II)本题解答可有两种思路,一是向量法,二是几何法.
思路一:连接AC,MC,可得,
得到.以C为坐标原点,建立直角坐标系.
利用.求角的余弦值.
思路二:按照“一作,二证,三计算”.
过C向AB引垂线交AB于N,连接,
由平面ABCD,可得,
得到为二面角的平面角,
利用直角三角形中的边角关系计算平面和平面ABCD所成角(锐角)的余弦值.
试题解析:(I)证明:因为四边形ABCD是等腰梯形,
且,
所以,又由M是AB的中点,
因此且.
连接,
在四棱柱中,
因为,
可得,
所以,四边形为平行四边形,
因此,
又平面,平面,
所以平面.
(II)解法一:
连接AC,MC,
由(I)知CD//AM且CD=AM,
所以四边形AMCD为平行四边形,
可得,
由题意,
所以为正三角形,
因此
因此.
以C为坐标原点,建立直角坐标系.
所以.
因此,
所以,,
设平面的一个法向量,
由,得,
可得平面的一个法向量.
又为平面ABCD的一个法向量,
因此.
所以平面和平面ABCD所成角(锐角)的余弦值为.
解法二:
由(I)知,平面平面ABCD=AB,
过C向AB引垂线交AB于N,连接,
由平面ABCD,可得,
因此为二面角的平面角,
在中,,
可得,
所以,
在中,,
所以平面和平面ABCD所成角(锐角)的余弦值为.
练习册系列答案
相关题目