题目内容
(2010•杭州模拟)设f(x)=Asin(ωx+?)(A>0,ω>0,x∈R),则f(0)=0是f(x)为奇函数的
充要
充要
条件.分析:f(0)=0⇒f(0)=Asin(ω×0+?)=Asin?=0⇒?=kπ,k∈Z⇒f(x)=Asin(ωx+?)(A>0,ω>0,x∈R)是奇函数.f(x)为奇函数⇒?=kπ,k∈Z⇒f(0)=Asin(ω×0+kπ)=Asinkπ=0.所以f(0)=0是f(x)为奇函数的充要条件.
解答:解:若f(0)=0,
则f(0)=Asin(ω×0+?)=Asin?=0,
∴?=kπ,k∈Z,
∴f(x)=Asin(ωx+?)(A>0,ω>0,x∈R)是奇函数.
若f(x)为奇函数,
则?=kπ,k∈Z,
∴f(0)=Asin(ω×0+kπ)=Asinkπ=0.
所以f(0)=0是f(x)为奇函数的充要条件.
故答案为:充要.
则f(0)=Asin(ω×0+?)=Asin?=0,
∴?=kπ,k∈Z,
∴f(x)=Asin(ωx+?)(A>0,ω>0,x∈R)是奇函数.
若f(x)为奇函数,
则?=kπ,k∈Z,
∴f(0)=Asin(ω×0+kπ)=Asinkπ=0.
所以f(0)=0是f(x)为奇函数的充要条件.
故答案为:充要.
点评:本题考查充分条件、必要条件和充要条件的判断,解题时要认真审题,仔细解答,注意三角函数性质的灵活运用.
练习册系列答案
相关题目