题目内容
【题目】将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,AC长为 π,A1B1长为 ,其中B1与C在平面AA1O1O的同侧.
(1)求三棱锥C﹣O1A1B1的体积;
(2)求异面直线B1C与AA1所成的角的大小.
【答案】
(1)
解:连结O1B1,则∠O1A1B1=∠A1O1B1= ,
∴△O1A1B1为正三角形,
∴ = ,
= =
(2)
解:
设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,
∴∠BB1C为直线B1C与AA1所成角(或补角),
BB1=AA1=1,
连结BC、BO、OC,
∠AOB=∠A1O1B1= , ,∴∠BOC= ,
∴△BOC为正三角形,
∴BC=BO=1,∴tan∠BB1C=45°,
∴直线B1C与AA1所成角大小为45°.
【解析】(1)连结O1B1 , 推导出△O1A1B1为正三角形,从而 = ,由此能求出三棱锥C﹣O1A1B1的体积.
(2)设点B1在下底面圆周的射影为B,连结BB1 , 则BB1∥AA1 , ∠BB1C为直线B1C与AA1所成角(或补角),由此能求出直线B1C与AA1所成角大小.
本题考查三棱锥的体积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
【考点精析】本题主要考查了异面直线及其所成的角的相关知识点,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系才能正确解答此题.
练习册系列答案
相关题目