题目内容

(本小题满分13分)

,轮船位于港口O北偏西且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶。假设该小船沿直线方向以海里/小时的航行速度匀速行驶,经过t小时与轮船相遇。

(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?

(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由。

【解析】如图,由(1)得

而小艇的最高航行速度只能达到30海里/小时,故轮船与小艇不可能在A、C(包含C)的任意位置相遇,设,OD=

由于从出发到相遇,轮船与小艇所需要的时间分别为

所以,解得

从而值,且最小值为,于是

取得最小值,且最小值为

此时,在中,,故可设计航行方案如下:

航行方向为北偏东,航行速度为30海里/小时,小艇能以最短时间与轮船相遇。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网