题目内容

已知平面向量
α
β
(
α
β
)
满足|
β
|=1,且
α
与 
β
-
α
的夹角为120°,则|
α
|的取值范围是
 
分析:
AB
=
α
AC
=
β
BC
=
β
-
α
,由已知
α
β
-
α
的夹角为120°可得∠ABC=60°,由正弦定理
|α|
sinC
=
|β|
sin60°
得|
α
|=
2
3
3
sinC≤
2
3
3
从而可求|
α
|的取值范围
解答:精英家教网解:设
AB
=
α
AC
=
β
如图所示:
则由
BC
=
β
-
α

又∵
α
β
-
α
的夹角为120°
∴∠ABC=60°
又由|
AC
|=|
β
|=1
由正弦定理
|α|
sinC
=
|β|
sin60°
得:
|
α
|=
2
3
3
sinC≤
2
3
3

∴|
α
|∈(0,
2
3
3
]
故|α|的取值范围是(0,
2
3
3
]
点评:本题主考查了向量的加法运算的三角形法则,考查了三角形的正弦定理及三角函数的性质,综合性较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网