题目内容

已知函数
(1)当时,求的最小值;
(2)在区间(1,2)内任取两个实数p,q,且p≠q,若不等式>1恒成立,求实数a的取值范围;
(3)求证:(其中)。

(1);(2)(3)详见解析

解析试题分析:(1)求导,令导数大于0得增区间,令导数小于0得减区间,根据函数的单调性求其最小值。(2)因为,表示点与点连成的斜率,可将问题转化为直线的斜率问题。根据导数的几何意义可求其斜率,将恒成立问题转化为求函数最值问题,求最值时还是用求导再求其单调性的方法求其最值。(3)由(2)可得,则有。用放缩法可证此不等式。
试题解析:解:(1)

上递减,上递增。
。           4分
(2)
表示点与点连成的斜率,又,即函数图象在区间(2,3)任意两点连线的斜率大于1,
内恒成立.            6分
所以,当恒成立.



上单调递减;
上单调递增.             9分

                 10分
(3)由(2)得,
                                    11分
所以


成立.           14分
考点:用导数研究函数的性质。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网