题目内容
【题目】已知数列{an}的前项和为,数列{bn},{cn}满足, ,其中.
(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;
(2)若存在实数λ,使得对一切,有bn≤λ≤cn,求证:数列{an}是等差数列.
【答案】(1)cn=1.(2)见解析.
【解析】试题分析:(1)由题意得,根据等差数列的通项公式求得,即可的通项公式;
(2)由,递推化简,得到,因为一切,都有,得到,得到,再利用等差数列的性质,即可得到数列为等差数列。
试题解析: (1)因为{an}是公差为2的等差数列,
所以an=a1+2(n-1),=a1+n-1,从而 (n+2)
cn=-(a1+n-1)=n+2,即cn=1.
(2)由(n+1)bn=an+1-,
得n(n+1) bn=nan+1-Sn,
(n+1)(n+2) bn+1=(n+1)an+2-Sn+1,
两式相减,并化简得an+2-an+1=(n+2) bn+1-nbn.
从而 (n+2) cn=-=-[an+1-(n+1) bn]
=+(n+1) bn
=+(n+1) bn
= (n+2)( bn+bn+1).
因此cn= ( bn+bn+1).
因为对一切n∈N*,有bn≤λ≤cn,所以λ≤cn= (bn+bn+1)≤λ,
故bn=λ,cn=λ.
所以 (n+1)λ=an+1-, ①
(n+2)λ= (an+1+an+2)-, ②
②-①,得 (an+2-an+1)=λ,即an+2-an+1=2λ.
故an+1-an=2λ (n≥2).
又2λ=a2-=a2-a1,则an+1-an=2λ (n≥1).
所以数列{an}是等差数列.
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |