题目内容

17.计算:
(1)${C}_{3n}^{38-n}$+${C}_{n+21}^{3n}$的值;
(2)A${\;}_{1}^{1}$+2${A}_{2}^{2}$+3${A}_{3}^{3}$+…+n${A}_{n}^{n}$.

分析 (1)先求出n的值,再计算组合数的值;
(2)根据nAnn=An+1n+1-Ann,化简算式即可.

解答 解:(1)∵$\left\{\begin{array}{l}{0≤38-n≤3n}\\{0≤3n≤n+21}\\{n{∈N}^{*}}\end{array}\right.$,
解得n=10,
∴${C}_{3n}^{38-n}$+${C}_{n+21}^{3n}$=${C}_{30}^{28}$+${C}_{31}^{30}$
=${C}_{30}^{2}$+${C}_{31}^{1}$
=435+30
=465;
(2)A11+2A22+3A33+…+nAnn
=(A22-A11)+(A33-A22)+…+(An+1n+1-Ann
=An+1n+1-A11
=(n+1)!-1.

点评 本题考查了排列与组合数的应用问题,也考查了逻辑推理能力与计算能力的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网