题目内容
17.计算:(1)${C}_{3n}^{38-n}$+${C}_{n+21}^{3n}$的值;
(2)A${\;}_{1}^{1}$+2${A}_{2}^{2}$+3${A}_{3}^{3}$+…+n${A}_{n}^{n}$.
分析 (1)先求出n的值,再计算组合数的值;
(2)根据nAnn=An+1n+1-Ann,化简算式即可.
解答 解:(1)∵$\left\{\begin{array}{l}{0≤38-n≤3n}\\{0≤3n≤n+21}\\{n{∈N}^{*}}\end{array}\right.$,
解得n=10,
∴${C}_{3n}^{38-n}$+${C}_{n+21}^{3n}$=${C}_{30}^{28}$+${C}_{31}^{30}$
=${C}_{30}^{2}$+${C}_{31}^{1}$
=435+30
=465;
(2)A11+2A22+3A33+…+nAnn
=(A22-A11)+(A33-A22)+…+(An+1n+1-Ann)
=An+1n+1-A11
=(n+1)!-1.
点评 本题考查了排列与组合数的应用问题,也考查了逻辑推理能力与计算能力的应用问题,是基础题目.
练习册系列答案
相关题目
19.已知t∈R,tan$\frac{α}{2}$=t,则cosα=( )
A. | $\frac{2t}{1+{t}^{2}}$ | B. | $\frac{2t}{1-{t}^{2}}$ | C. | $\frac{\sqrt{1+{t}^{2}}}{1+{t}^{2}}$ | D. | $\frac{1-{t}^{2}}{1+{t}^{2}}$ |
20.若A={x|x<1},B={x|x2+2x>0},则A∩B=( )
A. | (0,1) | B. | (-∞,-2) | C. | (-2,0) | D. | (-∞,-2)∪(0,1) |