题目内容
【题目】已知定圆,定直线,过的一条动直线与直线相交于,与圆相交于, 两点, 是中点.
(Ⅰ)当与垂直时,求证: 过圆心.
(Ⅱ)当,求直线的方程.
(Ⅲ)设,试问是否为定值,若为定值,请求出的值;若不为定值,请说明理由.
【答案】(Ⅰ)见解析;(Ⅱ)或.(Ⅲ).
【解析】试题分析:(I)由已知,故,所以直线的方程为,即可证明;(II)当直线与轴垂直时,易知符合题意;当直线与轴不垂直时,设直线的方程为,利用圆心到直线的距离等于半径,即可求解;(III)当与轴垂直时,易得, ,求得;当的斜率存在时,设直线的方程为,代入圆的方程,利用根与系数的关系,化简即可求解定值.
试题解析:(Ⅰ)由已知,故,所以直线的方程为.
将圆心代入方程易知过圆心.
(Ⅱ)当直线与轴垂直时,易知符合题意;
当直线与轴不垂直时,设直线的方程为,由于,
所以,由,解得.
故直线的方程为或.
(Ⅲ)当与轴垂直时,易得, ,又,则,
,故,即.
当的斜率存在时,设直线的方程为,代入圆的方程得
,则.
,即,
.又由得,
则.
故,
综上, 的值为定值,且.
另解一:连结,延长交于点,由(Ⅰ)知,又于,
故.于是有.
由, ,得.
故.
另解二:连结并延长交直线于点,连结, ,由(Ⅰ)知,又,
所以四点都在以为直径的圆上,由相交弦定理得
.
【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取名同学(男人,女人),给所有同学几何题和代数题各一题,让各位同学只能自由选择其中一道题进行解答.选题情况如下表(单位:人):
几何题 | 代数题 | 总计 | |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
几何题 | 代数题 | 总计 | |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
(1)能否据此判断有的把握认为视觉和空间能力与性别有关?
(2)现从选择做几何题的名女生中,任意抽取两人,对她们的答题情况进行全程研究,记甲、乙两位女生被抽到的人数为,求的分布列和.
附表及公式: