题目内容
【题目】(导学号:05856295)德国大数学家高斯年少成名,被誉为数学王子.19岁的高斯得到了一个数学史上非常重要的结论,就是《正十七边形尺规作图之理论与方法》, 在其年幼时,对1+2+3+…+100的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也被称为高斯算法.现有函数f(x)=,则f(1)+f(2)+…+f(m+2017)等于( )
A. B. C. D.
【答案】C
【解析】f(1)+f(2)+f(3)+…+f(m+2017)=++…++,
又f(1)+f(2)+f(3)+…+f(m+2017)=++…++,
两式相加可得f(1)+f(2)+f(3)+…+f(m+2017)=.
故选:C
练习册系列答案
相关题目
【题目】(导学号:05856317)为了调查“小学成绩”与“中学成绩”两个变量之间是否存在相关关系,某科研机构将所调查的结果统计如下表所示:
中学成绩不优秀 | 中学成绩优秀 | 总计 | |
小学成绩优秀 | 5 | 20 | 25 |
小学成绩不优秀 | 10 | 5 | 15 |
总计 | 15 | 25 | 40 |
则下列说法正确的是( )
参考数据:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k0 | 0.46 | 0.71 | 1.32 | 2.07 | 2.71 | 3.84 | 5.024 | 6.635 | 7.879 | 10.828 |
A. 在犯错误的概率不超过0.1的前提下,认为“小学成绩与中学成绩无关”
B. 在犯错误的概率不超过0.1的前提下,认为“小学成绩与中学成绩有关”
C. 在犯错误的概率不超过0.01的前提下,认为“小学成绩与中学成绩无关”
D. 在犯错误的概率不超过0.01的前提下,认为“小学成绩与中学成绩有关”