题目内容
11.已知数列{an}满足:a1=3232,an=2-1an−11an−1(n≥2)分析 (1)易得an+1an=2an-1,从而bn+1-bn=1an+1−11an+1−1-1an−11an−1,化简得bn+1-bn=1,故数列{bn}为首项为2、公差为1的等差数列;
(2)数列{bn}的前n项和Tn=2n+n(n−1)22n+n(n−1)2=n2+3n2n2+3n2,则Sn=4Tn-5n=4×n2+3n2n2+3n2-5n=2n2+n,将1Sn−11Sn−1放大至12(1n−1−1n)12(1n−1−1n),再将1S1−11S1−1+1S2−11S2−1+…+1Sn−11Sn−1中第6项以后放缩即可.
解答 证明:由an=2-1an−11an−1可知anan-1=2an-1-1,所以an+1an=2an-1.
(1)∵bn=1an−11an−1,
∴bn+1-bn=1an+1−11an+1−1-1an−11an−1
=an−1−an+1+1(an+1−1)(an−1)an−1−an+1+1(an+1−1)(an−1)
=an−an+1anan+1−an−an+1+1an−an+1anan+1−an−an+1+1
=an−an+12an−1−an−an+1+1an−an+12an−1−an−an+1+1
=1,
又b1=1a1−1b1=1a1−1=132−1132−1=2,
故数列{bn}为首项为2、公差为1的等差数列;
(2)由(1)知,数列{bn}的前n项和Tn为:
Tn=2n+n(n−1)22n+n(n−1)2=n2+3n2,
又cn=4an−1-5,
所以{cn}的前n项和Sn为:
Sn=4Tn-5n=4×n2+3n2-5n=2n2+n,
则1Sn−1=12n2+n−1=1(2n−1)(n+1)
又2n2+n-1>2n2-2n=2n(n-1)
所以1Sn−1<12(1n−1−1n),
所以1S1−1+1S2−1+…+1Sn−1
<11×2+13×3+15×4+17×5+19×6+12[15-16+…+1n−1-1n]
<12+19+120+135+154+110
=3055037800<7390,
即1S1−1+1S2−1+…+1Sn−1<7390.
点评 本题考查了递推式的应用、“裂项求和”以及放缩法,考查了推理能力与计算能力,属于难题.