题目内容

11.已知数列{an}满足:a1=3232,an=2-1an11an1(n≥2)
(1)若bn=1an11an1,证明:{bn}为等差数列;
(2)若cn=4an14an1-5,Sn为{cn}的前n项和,求证:1S111S11+1S211S21+…+1Sn11Sn173907390

分析 (1)易得an+1an=2an-1,从而bn+1-bn=1an+111an+11-1an11an1,化简得bn+1-bn=1,故数列{bn}为首项为2、公差为1的等差数列;
(2)数列{bn}的前n项和Tn=2n+nn122n+nn12=n2+3n2n2+3n2,则Sn=4Tn-5n=4×n2+3n2n2+3n2-5n=2n2+n,将1Sn11Sn1放大至121n11n121n11n,再将1S111S11+1S211S21+…+1Sn11Sn1中第6项以后放缩即可.

解答 证明:由an=2-1an11an1可知anan-1=2an-1-1,所以an+1an=2an-1.
(1)∵bn=1an11an1
∴bn+1-bn=1an+111an+11-1an11an1
=an1an+1+1an+11an1an1an+1+1an+11an1
=anan+1anan+1anan+1+1anan+1anan+1anan+1+1
=anan+12an1anan+1+1anan+12an1anan+1+1
=1,
b1=1a11b1=1a11=13211321=2,
故数列{bn}为首项为2、公差为1的等差数列;
(2)由(1)知,数列{bn}的前n项和Tn为:
Tn=2n+nn122n+nn12=n2+3n2
又cn=4an1-5,
所以{cn}的前n项和Sn为:
Sn=4Tn-5n=4×n2+3n2-5n=2n2+n,
1Sn1=12n2+n1=12n1n+1
又2n2+n-1>2n2-2n=2n(n-1)
所以1Sn1121n11n
所以1S11+1S21+…+1Sn1
11×2+13×3+15×4+17×5+19×6+12[15-16+…+1n1-1n]
12+19+120+135+154+110
=30550378007390
1S11+1S21+…+1Sn17390

点评 本题考查了递推式的应用、“裂项求和”以及放缩法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网