题目内容
已知等差数列{an}的前n项和为Sn,n∈N*,且a2=3,点(10,S10)在直线y=10x上.
(1)求数列{an}的通项公式;
(2)设bn=2an+2n,求数列{bn}的前n项和Tn.
(1)an=2n-1(2)×4n+n2+n-
【解析】(1)设等差数列{an}的公差为d,
∵点(10,S10)在直线y=10x上,∴S10=100,
又∵a2=3,∴解得∴an=2n-1.
(2)∵bn=2an+2n=×4n+2n,
∴Tn=b1+b2+…+bn=(4+42+…+4n)+2(1+2+…+n)=+n2+n
=×4n+n2+n-.
练习册系列答案
相关题目