题目内容
设函数的定义域为R,若存在常数M>0,使对 一切实数x均成 立,则称为“倍约束函数”,现给出下列函数:①:②:③;④ ⑤是定义在实数集R上的奇函数,且
对一切均有,其中是“倍约束函数”的有( )
A.1个 | B.2个 | C.3个 | D.4个 |
C
解析试题分析:解:①对于函数,存在,使对 一切实数x均成 立,所以该函数是“倍约束函数”;
②对于函数,当时,,故不存在常数M>0,使对 一切实数x均成 立,所以该函数不是“倍约束函数”;
③对于函数,当时,,故不存在常数M>0,使对 一切实数x均成 立,所以该函数不是“倍约束函数”;
④对于函数,因为当时,;
当时,,所以存在常数,使对 一切实数x均成 立, 所以该函数是“倍约束函数”;
⑤由题设是定义在实数集R上的奇函数,,所以在中令,于是有,即存在常数,使对 一切实数x均成 立, 所以该函数是“倍约束函数”;
综上可知“倍约束函数”的有①④⑤共三个,所以应选C.
考点:1、新定义;2、赋值法;3、基本初等函数的性质.
练习册系列答案
相关题目
当时,函数在时取得最大值,则实数的取值范围是 ( )
A. | B. | C. | D. |
下列函数中,既是奇函数又在区间上单调递增的函数为( )
A. | B. | C. | D. |
若函数,若,则实数的取值范围是( )
A. | B. |
C. | D. |
已知函数则函数的零点个数是( )
A.0 | B.1 | C.2 | D.3 |
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )
A.(-1,1) | B.(-1,+∞) |
C.(-∞,-1) | D.(-∞,+∞) |
己知集合M={﹣1,1,2,4}N={0,1,2}给出下列四个对应法则,其中能构成从M到N的函数是( )
A.y=x2 | B.y=x+1 | C.y=2x | D.y=log2|x| |
若,则函数的两个零点分别位于区间( )
A.(a,b)和(b,c)内 |
B.(-∞,a)和(a,b)内 |
C.(b,c)和(c,+∞)内 |
D.(-∞,a)和(c,+∞)内 |