题目内容
16.袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为$\frac{5}{6}$.分析 根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.
解答 解:根据题意,记白球为A,红球为B,黄球为C1、C2,则
一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,
其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;
所以所求的概率是P=$\frac{5}{6}$,
故答案为:$\frac{5}{6}$.
点评 本题考查了用列举法求古典概型的概率的应用问题,是基础题目.
练习册系列答案
相关题目
7.已知数列{an}满足a1=$\frac{1}{7}$,对于任意的n∈N*,an+1=$\frac{7}{2}{a_n}(1-{a_n})$,则a2015-a2014=( )
A. | $\frac{2}{7}$ | B. | $-\frac{2}{7}$ | C. | $-\frac{3}{7}$ | D. | $\frac{3}{7}$ |
6.化简$\sqrt{{a}^{-\frac{4}{3}}{b}^{2}\root{3}{a{b}^{2}}}$(a>0,b>0)的结果是( )
A. | a${\;}^{\frac{1}{2}}$b${\;}^{\frac{4}{3}}$ | B. | ${a}^{-\frac{1}{2}}$b${\;}^{-\frac{4}{3}}$ | C. | ${a}^{-\frac{1}{2}}$b${\;}^{\frac{4}{3}}$ | D. | a${\;}^{\frac{1}{2}}$b${\;}^{-\frac{4}{3}}$ |