题目内容
【题目】圆心在原点的两圆半径分别为,点是大圆上一动点,过点作轴的垂线,垂足为, 与小圆交于点,过作的垂线,垂足为,设点坐标为.
(1)求的轨迹方程;
(2) 已知直线: (是常数,且, , 是轨迹上的两点,且在直线的两侧,满足两点到直线的距离相等.平面内是否存在定点,使得恒成立?若存在,求出定点坐标;若不可能,说明理由.
【答案】(1);(2)存在.
【解析】试题分析: 求出, 的坐标,根据、、三点共线,算出的轨迹方程;
设点的坐标,代入椭圆方程,点差法算出,代入到的中点和坐标,可以得到,整理即可计算出结果
解析:(1)依题意可得、,
又、、三点共线,可得,
整理得,即,
的轨迹是以为半长轴, 为半短轴,焦点在轴的椭圆.
(2)由题意可知、的中点在直线: 上,
设、、, ,
又、在椭圆上,有
,
可得.
又, ,
∴, ,
∵,∴是等腰三角形,∴.
即恒成立,
整理得,关于恒成立,
∴ ,
∴存在满足题意.
【题目】到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了名学生进行调查.
(1)已知抽取的名学生中有女生45名,求的值及抽取的男生的人数.
(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下列联表.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.
(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.
附:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
【题目】近几年出现各种食品问题,食品添加剂会引起血脂增高、血压增高、血糖增高等疾病.为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:
患三高疾病 | 不患三高疾病 | 合计 | |
男 | 6 | 30 | |
女 | |||
合计 | 36 |
(1)请将如图的列联表补充完整;若用分层抽样的方法在患三高疾病的人群中抽人,其中女性抽多少人?
(2)为了研究三高疾病是否与性别有关,请计算出统计量,并说明你有多大的把握认为三高疾病与性别有关?
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式,其中)