题目内容
【题目】某届奥运会上,中国队以26金18银26铜的成绩列金牌榜第三奖牌榜第二.某校体育爱好者在高三年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了60人,具体的调查结果如下表:
班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
频数 | 6 | 10 | 13 | 11 | 9 | 11 |
满意人数 | 5 | 9 | 10 | 6 | 7 | 7 |
(1)在高三年级全体学生中随机抽取1名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班和二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为,求随机变量的分布列及数学期望.
【答案】(1)(2)分布列见解析,
【解析】
(1)由表中数据可计算得到持满意态度的频率,由此可得结果;
(2)根据一班和二班持不满意态度的人数可确定所有可能的取值,根据超几何分布概率公式计算可得每个取值对应的概率,由此得到的分布列;根据数学期望的计算公式计算可得期望.
(1)由表中数据知:在被抽取的人中,持满意态度的学生共人
持满意态度的频率为
据此估计,高三年级全体学生中随机抽取名学生,该生持满意态度的概率为
(2)一班和二班中持不满意态度的共人 的所有可能取值为
, ,
的分布列为:
.
【题目】如图,平面四边形中,,是,中点,,,,将沿对角线折起至,使平面平面,则四面体中,下列结论不正确的是( )
A. 平面
B. 异面直线与所成的角为
C. 异面直线与所成的角为
D. 直线与平面所成的角为
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 1 | 3 | 4 | 7 |
表中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为,.
【题目】某公司需要对所生产的三种产品进行检测,三种产品数量(单位:件)如下表所示:
产品 | A | B | C |
数量(件) | 180 | 270 | 90 |
采用分层抽样的方法从以上产品中共抽取6件.
(1)求分别抽取三种产品的件数;
(2)将抽取的6件产品按种类编号,分别记为,现从这6件产品中随机抽取2件.
(ⅰ)用所给编号列出所有可能的结果;
(ⅱ)求这两件产品来自不同种类的概率.