ÌâÄ¿ÄÚÈÝ
£¨2013•Í¨ÖÝÇøһģ£©ÏÖÓÐÒ»×黥²»ÏàͬÇÒ´ÓСµ½´óÅÅÁеÄÊý¾Ýa0£¬a1£¬a2£¬a3£¬a4£¬a5£¬ÆäÖÐa0=0£®¼ÇT=a0+a1+a2+a3+a4+a5£¬xn=
£¬yn=
(a0+a1+¡+an)£¨n=0£¬1£¬2£¬3£¬4£¬5£©£¬×÷º¯Êýy=f£¨x£©£¬Ê¹ÆäͼÏóΪÖðµãÒÀ´ÎÁ¬½ÓµãPn£¨xn£¬yn£©£¨n=0£¬1£¬2£¬3£¬4£¬5£©µÄÕÛÏߣ®
£¨¢ñ£©Çóf£¨0£©ºÍf£¨1£©µÄÖµ£»
£¨¢ò£©ÉèÖ±ÏßPn-1PnµÄбÂÊΪkn£¨n=1£¬2£¬3£¬4£¬5£©£¬ÅжÏk1£¬k2£¬k3£¬k4£¬k5µÄ´óС¹Øϵ£»
£¨¢ó£©Ö¤Ã÷£ºµ±x¡Ê£¨0£¬1£©Ê±£¬f£¨x£©£¼x£®
n |
5 |
1 |
T |
£¨¢ñ£©Çóf£¨0£©ºÍf£¨1£©µÄÖµ£»
£¨¢ò£©ÉèÖ±ÏßPn-1PnµÄбÂÊΪkn£¨n=1£¬2£¬3£¬4£¬5£©£¬ÅжÏk1£¬k2£¬k3£¬k4£¬k5µÄ´óС¹Øϵ£»
£¨¢ó£©Ö¤Ã÷£ºµ±x¡Ê£¨0£¬1£©Ê±£¬f£¨x£©£¼x£®
·ÖÎö£º£¨¢ñ£©½áºÏÒÑÖª´úÈë¿ÉÇóf£¨0£©=
£¬f£¨1£©=
¼´¿ÉÇó½â
£¨¢ò£©ÓÉÌâÒâ¿ÉµÃ£¬kn=
=
an£¬½áºÏÒÑÖªa0£¼a1£¼a2£¼a3£¼a4£¼a5£¬¿ÉÅжÏ
£¨¢ó£©ÒªÖ¤Ã÷f£¨x£©£¼x£¨0£¼x£¼1£©£¬Ö»ÐèÖ¤Ã÷f£¨xn£©£¼xn£¬
·¨Ò»£º¿ÉÖ¤5£¨a1+a2+¡+an£©=[n+£¨5-n£©]£¨a1+a2+¡+an£©£¼nT£¬¼´¿ÉÖ¤Ã÷
·¨¶þ£ºkn£¼1ʱ£¬yn=£¨y1-y0£©+£¨y2-y1£©+¡+£¨yn-yn-1£©
µ±kn¡Ý1ʱ£¬yn=y5-£¨y5-yn£©=1-[£¨yn+1-yn£©+£¨yn+2-yn+1£©+¡+£¨y5-y4£©]¿ÉÖ¤Ã÷
a0 |
a0+a1+¡+a5 |
a0+a1+¡+a5 |
a0+a1+¡+a5 |
£¨¢ò£©ÓÉÌâÒâ¿ÉµÃ£¬kn=
yn-yn-1 |
xn-xn-1 |
5 |
T |
£¨¢ó£©ÒªÖ¤Ã÷f£¨x£©£¼x£¨0£¼x£¼1£©£¬Ö»ÐèÖ¤Ã÷f£¨xn£©£¼xn£¬
·¨Ò»£º¿ÉÖ¤5£¨a1+a2+¡+an£©=[n+£¨5-n£©]£¨a1+a2+¡+an£©£¼nT£¬¼´¿ÉÖ¤Ã÷
·¨¶þ£ºkn£¼1ʱ£¬yn=£¨y1-y0£©+£¨y2-y1£©+¡+£¨yn-yn-1£©
µ±kn¡Ý1ʱ£¬yn=y5-£¨y5-yn£©=1-[£¨yn+1-yn£©+£¨yn+2-yn+1£©+¡+£¨y5-y4£©]¿ÉÖ¤Ã÷
½â´ð£º£¨¢ñ£©½â£ºf(0)=
=0£¬¡£¨2·Ö£©
f(1)=
=1£» ¡£¨4·Ö£©
£¨¢ò£©½â£ºkn=
=
an£¬n=1£¬2£¬3£¬4£¬5£® ¡£¨6·Ö£©
ÒòΪ¡¡a0£¼a1£¼a2£¼a3£¼a4£¼a5£¬
ËùÒÔ¡¡k1£¼k2£¼k3£¼k4£¼k5£® ¡£¨8·Ö£©
£¨¢ó£©Ö¤£ºÓÉÓÚf£¨x£©µÄͼÏóÊÇÁ¬½Ó¸÷µãPn£¨xn£¬yn£©£¨n=0£¬1£¬2£¬3£¬4£¬5£©µÄÕÛÏߣ¬
ÒªÖ¤Ã÷f£¨x£©£¼x£¨0£¼x£¼1£©£¬Ö»ÐèÖ¤Ã÷f£¨xn£©£¼xn£¨n=1£¬2£¬3£¬4£©£®¡£¨9·Ö£©
ÊÂʵÉÏ£¬µ±x¡Ê£¨xn-1£¬xn£©Ê±£¬f(x)=
•(x-xn-1)+f(xn-1)=
f(xn-1)+
f(xn)£¼
xn-1+
xn=x£®
ÏÂÃæÖ¤Ã÷f£¨xn£©£¼xn£®
·¨Ò»£º¶ÔÈκÎn£¨n=1£¬2£¬3£¬4£©£¬5£¨a1+a2+¡+an£©=[n+£¨5-n£©]£¨a1+a2+¡+an£©¡£¨10·Ö£©=n£¨a1+a2+¡+an£©+£¨5-n£©£¨a1+a2+¡+an£©¡Ün£¨a1+a2+¡+an£©+£¨5-n£©nan¡£¨11·Ö£©=n[a1+a2+¡+an+£¨5-n£©an]£¼n£¨a1+a2+¡+an+an+1+¡+a5£©=nT¡£¨12·Ö£©
ËùÒÔ¡¡f(xn)=
£¼
=xn£®¡£¨13·Ö£©
·¨¶þ£º¶ÔÈκÎn£¨n=1£¬2£¬3£¬4£©£¬
µ±kn£¼1ʱ£¬yn=£¨y1-y0£©+£¨y2-y1£©+¡+£¨yn-yn-1£©=
(k1+k2+¡+kn)£¼
=xn£»¡£¨10·Ö£©
µ±kn¡Ý1ʱ£¬yn=y5-£¨y5-yn£©=1-[£¨yn+1-yn£©+£¨yn+2-yn+1£©+¡+£¨y5-y4£©]=1-
(kn+1+kn+2+¡+k5)£¼1-
(5-n)=
=xn£®
×ÛÉÏ£¬f£¨xn£©£¼xn£® ¡£¨13·Ö£©
a0 |
a0+a1+a2+a3+a4+a5 |
f(1)=
a0+a1+a2+a3+a4+a5 |
a0+a1+a2+a3+a4+a5 |
£¨¢ò£©½â£ºkn=
yn-yn-1 |
xn-xn-1 |
5 |
T |
ÒòΪ¡¡a0£¼a1£¼a2£¼a3£¼a4£¼a5£¬
ËùÒÔ¡¡k1£¼k2£¼k3£¼k4£¼k5£® ¡£¨8·Ö£©
£¨¢ó£©Ö¤£ºÓÉÓÚf£¨x£©µÄͼÏóÊÇÁ¬½Ó¸÷µãPn£¨xn£¬yn£©£¨n=0£¬1£¬2£¬3£¬4£¬5£©µÄÕÛÏߣ¬
ÒªÖ¤Ã÷f£¨x£©£¼x£¨0£¼x£¼1£©£¬Ö»ÐèÖ¤Ã÷f£¨xn£©£¼xn£¨n=1£¬2£¬3£¬4£©£®¡£¨9·Ö£©
ÊÂʵÉÏ£¬µ±x¡Ê£¨xn-1£¬xn£©Ê±£¬f(x)=
f(xn)-f(xn-1) |
xn-xn-1 |
xn-x |
xn-xn-1 |
x-xn-1 |
xn-xn-1 |
xn-x |
xn-xn-1 |
x-xn-1 |
xn-xn-1 |
ÏÂÃæÖ¤Ã÷f£¨xn£©£¼xn£®
·¨Ò»£º¶ÔÈκÎn£¨n=1£¬2£¬3£¬4£©£¬5£¨a1+a2+¡+an£©=[n+£¨5-n£©]£¨a1+a2+¡+an£©¡£¨10·Ö£©=n£¨a1+a2+¡+an£©+£¨5-n£©£¨a1+a2+¡+an£©¡Ün£¨a1+a2+¡+an£©+£¨5-n£©nan¡£¨11·Ö£©=n[a1+a2+¡+an+£¨5-n£©an]£¼n£¨a1+a2+¡+an+an+1+¡+a5£©=nT¡£¨12·Ö£©
ËùÒÔ¡¡f(xn)=
a1+a2+¡+an |
T |
n |
5 |
·¨¶þ£º¶ÔÈκÎn£¨n=1£¬2£¬3£¬4£©£¬
µ±kn£¼1ʱ£¬yn=£¨y1-y0£©+£¨y2-y1£©+¡+£¨yn-yn-1£©=
1 |
5 |
n |
5 |
µ±kn¡Ý1ʱ£¬yn=y5-£¨y5-yn£©=1-[£¨yn+1-yn£©+£¨yn+2-yn+1£©+¡+£¨y5-y4£©]=1-
1 |
5 |
1 |
5 |
n |
5 |
×ÛÉÏ£¬f£¨xn£©£¼xn£® ¡£¨13·Ö£©
µãÆÀ£º±¾ÌâÒÔж¨ÒåΪÔØÌ壬Ö÷Òª¿¼²éÁËÊýÁеÄÇóºÍ¼°Ò»¶¨µÄÍÆÀíÓëÔËËãµÄÄÜÁ¦£¬ÊÔÌâ¾ßÓÐÒ»¶¨µÄ×ÛºÏÐÔ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿