题目内容
关于数列有下列四个判断:
①若成等比数列,则也成等比数列;②若数列{}既是等差数列也是等比数列,则{}为常数列;③数列{}的前n项和为,且,则{}为等差或等比数列;④数列{}为等差数列,且公差不为零,则数列{}中不会有,其中正确判断的序号是______.(注:把你认为正确判断的序号都填上)
②④
解析试题分析:①对于数列-1,1,-1,1,满足a,b,c,d成等比数列,但a+b=0,b+c=0,c+d=0,所以a+b,b+c,c+d不是等比数列,所以①错误.②若数列{an}既是等差数列又是等比数列,则数列{an}必是非零的常数列,所以an=an+1成立,所以②正确.③当a=0时,数列{an}既不是等差数列也不是等比数列,所以③错误.④在等差数列中,若am=an,则a1+(m-1)d=a1+(n-1)d,因为d≠0,所以m=n,与m≠n矛盾,所以④正确.故答案为:②④.
考点:命题的真假判断与应用;等差数列与等比数列的综合.
练习册系列答案
相关题目