题目内容

(2012•北海一模)如图(1)在等腰△ABC中,D,E,F分别是AB,AC和BC边的中点,∠ACB=120°,现将△ABC沿CD翻折成直二面角A-DC-B.(如图(2))
(I)试判断直线AB与平面DEF的位置关系,并说明理由;
(II)求二面角E-DF-C的余弦值;
(III)在线段BC是否存在一点P,但AP⊥DE?证明你的结论.
分析:(I)利用线线平行证明线面平行,由E、F分别是AC、BC中点,得EF∥AB,从而可证AB∥平面DEF;
方法一:(II)取CD的点M,使EM∥AD,过M作MN⊥DF于点N,连接EN,则EN⊥DF,从而可得∠MNE是二面角E-DF-C的平面角,进而可得tan∠MNE=2,从而可得二面角E-DF-C的余弦值;
(Ⅲ)在线段BC上不存在点P,使AP⊥DE,作AG⊥DE,交DE于G交CD于Q由已知得∠AED=120°,于是点G在DE的延长线上,从而Q在DC的延长线上,过Q作PQ⊥CD交BC于P,可得P在BC的延长线上.
方法二(Ⅱ)建立空间直角坐标系,用坐标表示点与向量,求出平面CDF的法向量为
m
=(0,0,1)
,平面EDF的法向量为
n
=(
3
,-3,
3
)
,从而可求二面角E-DF-C的余弦值;
(Ⅲ)设P(x,y,0),利用
AP
DE
=0
BP
PC
,求得P的坐标,从而可得在线段BC上不存在点P使AP⊥DE.
解答:解:(I)如图1在△ABC中,由E、F分别是AC、BC中点,得EF∥AB,
又AB?平面DEF,EF?平面DEF,∴AB∥平面DEF.
方法一:(II)∵AD⊥CD,BD⊥CD,∴∠ADB是二面角A-CD-B的平面角,∴AD⊥BD,
∴AD⊥平面BCD,
取CD的点M,使EM∥AD,∴EM⊥平面BCD,
过M作MN⊥DF于点N,连接EN,则EN⊥DF,
∴∠MNE是二面角E-DF-C的平面角.
设CD=a,则AC=BC=2a,AD=DB=
3
a

在△DFC中,设底边DF上的高为h
S△DFC=
1
2
3
a•a•
1
2
=
1
2
1
2
•2a•h
,∴h=
3
2
a

在Rt△EMN中,EM=
1
2
AD=
3
2
a
,MN=
1
2
h=
3
4
a
,∴tan∠MNE=2
从而cos∠MNE=
5
5

(Ⅲ)在线段BC上不存在点P,使AP⊥DE,
证明如下:在图2中,作AG⊥DE,交DE于G交CD于Q由已知得∠AED=120°,于是点G在DE的延长线上,从而Q在DC的延长线上,过Q作PQ⊥CD交BC于P,∴PQ⊥平面ACD,∴PQ⊥DE,∴DE⊥平面APQ,∴AP⊥DE.
但P在BC的延长线上.
方法二(Ⅱ)如图3以点D为坐标原点,直线DB、DC为x轴、y轴,建立空间直角坐标系,
设CD=a,则AC=BC=2a,AD=DB=
3
a
,则A(0,0,
3
a
),B(
3
a
,0,0),C(0,a,0,),E(0,
a
2
3
2
a),F(
3
2
a,
a
2
,0)

取平面CDF的法向量为
m
=(0,0,1)
,设平面EDF的法向量为
n
=(x,y,z)

DF
n
=0
DE
n
=0
,得
3
x+y=0
y+
3
z=0
n
=(
3
,-3,
3
)

cos<
m
n
>=
m
n
|
m
||
n
|
=
5
5
,所以二面角E-DF-C的余弦值为
5
5

(Ⅲ)设P(x,y,0),则
AP
DE
=
a
2
y-
3
2
a2=0
,∴y=3a,
BP
=(x-
3
a,y,0),
PC
=(-x,a-y,0)

BP
PC
 ,   ∴(x-
3
a)(a-y)=-xy,    ∴x+
3
y=
3
a

y=3a代入上式得x=-2
3
a
,可知点P在BC的延长线上
所以在线段BC上不存在点P使AP⊥DE.
点评:本题线面平行,考查面面角,考查存在性问题,解题的关键是利用线面平行的判定,确定面面角,同时注意向量方法的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网