题目内容

已知向量
a
=(2sinx,
3
cosx),
b
=(sinx,2sinx),函数f(x)=
a
b

(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)若不等式f(x)≥m对x∈[0,
π
2
]都成立,求实数m的最大值.
分析:(Ⅰ)根据向量
a
=(2sinx,
3
cosx),
b
=(sinx,2sinx),函数f(x)=
a
b
,利用向量的数量积公式,结合二倍角、辅助角公式化简函数,从而可得f(x)的单调递增区间;
(Ⅱ)不等式f(x)≥m对x∈[0,
π
2
]都成立,即f(x)min≥m成立.
解答:解:(Ⅰ)∵向量
a
=(2sinx,
3
cosx),
b
=(sinx,2sinx),函数f(x)=
a
b

∴f(x)=2sin2x+2
3
sinxcosx=
3
sin2x-cos2x+1=2sin(2x-
π
6
)+1
2kπ-
π
2
≤2x-
π
6
2kπ+
π
2
(k∈Z)
kπ-
π
6
≤x≤kπ+
π
3
(k∈Z)
∴f(x)的单调递增区间为[kπ-
π
6
,kπ+
π
3
]
(k∈Z);
(Ⅱ)不等式f(x)≥m对x∈[0,
π
2
]都成立,即f(x)min≥m成立
∵x∈[0,
π
2
],∴2x-
π
6
[-
π
6
6
]

∴sin(2x-
π
6
)∈[-
1
2
,1]

∴f(x)=2sin(2x-
π
6
)+1∈[0,3]
∴m≤0
∴m的最大值为0.
点评:本题考查向量的数量积运算,考查函数的单调性,考查恒成立问题,正确确定函数解析式是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网