题目内容
在(x2+x+1)n=
x2n+
x2n-1+
x2n-2+…+
x+
的展开式中,把
,
,
,…,
叫做三项式的n次系数列.
(1)写出三项式的2次系数列和3次系数列;
(2)列出杨辉三角形类似的表(0≤n≤4,n∈N),用三项式的n次系数表示
,
,
(1≤k≤2n-1);
(3)用二项式系数表示
.
D | 0 n |
D | 1 n |
D | 2 n |
D | 2n-1 n |
D | 2n n |
D | 0 n |
D | 1 n |
D | 2 n |
D | 2n n |
(1)写出三项式的2次系数列和3次系数列;
(2)列出杨辉三角形类似的表(0≤n≤4,n∈N),用三项式的n次系数表示
D | 0 n+1 |
D | 1 n+1 |
D | k+1 n+1 |
(3)用二项式系数表示
D | 3 n |
分析:(1)由(x2+x+1)2=x4+x2+1+2x3+2x2+2x=x4+2x3+3x2+2x+1,求得2次系数列.同理根据(x2+x+1)3=(x4+2x3+3x2+2x+1)(x2+x+1)=x6+3x5+6x4+7x3+6x2+3x+1,求得3次系数列.
(2)如图所示:根据三项式的2次系数列和3次系数列的定义,可得结论.
(3)根据三项式的2次系数列和3次系数列的定义,再利用组合数公式的性质,可用二项式系数表示
.
(2)如图所示:根据三项式的2次系数列和3次系数列的定义,可得结论.
(3)根据三项式的2次系数列和3次系数列的定义,再利用组合数公式的性质,可用二项式系数表示
D | 3 n |
解答:解:(1)在( x2+x+1 )n=
x2 n+
x2 n-1+
x2 n-2+…+
x+
的展开式中,
∵(x2+x+1)2=x4+x2+1+2x3+2x2+2x=x4+2x3+3x2+2x+1,
∴
=1 ,
=2 ,
=3 ,
=2 ,
=1.
∵(x2+x+1)3=(x4+2x3+3x2+2x+1)(x2+x+1)=x6+3x5+6x4+7x3+6x2+3x+1,
∴
=1 ,
=3 ,
=6 ,
=7 ,
=6 ,
=3 ,
=1.
(2)列出杨辉三角形类似的表(0≤n≤4,n∈N):
=
=0 ,
=
+
=n+1 ,
=
+
+
( 1≤k≤2 n-1 ).
(3)用二项式系数表示
:
=1 ,
=
+
+
=3=
,
=
+
+
=6=
=
+
+
=10=
, …
可得
=
+
+
=1+n-2+
=
.
∵
=
+
+
,
∴
-
=
+
=
+
-1=
-1.
∵
-
=
-1,
-
=
-1,
-
=
-1,… ,
-
=
-1,
∴
-
=
+
+
+…+
-( n-2 )
=(
-
)+(
-
)+(
-
)+…+(
-
)-( n-2 )=
-
-( n-2 )
=
-( n+2 ).
∴
=
-
.
D | 0 n |
D | 1 n |
D | 2 n |
D | 2 n-1 n |
D | 2 n n |
∵(x2+x+1)2=x4+x2+1+2x3+2x2+2x=x4+2x3+3x2+2x+1,
∴
D | 0 2 |
D | 1 2 |
D | 2 2 |
D | 3 2 |
D | 4 2 |
∵(x2+x+1)3=(x4+2x3+3x2+2x+1)(x2+x+1)=x6+3x5+6x4+7x3+6x2+3x+1,
∴
D | 0 3 |
D | 1 3 |
D | 2 3 |
D | 3 3 |
D | 4 3 |
D | 5 3 |
D | 6 3 |
(2)列出杨辉三角形类似的表(0≤n≤4,n∈N):
|
D | 0 n+1 |
D | 0 n |
D | 1 n+1 |
D | 1 n |
D | 0 n |
D | k+1 n+1 |
D | k-1 n |
D | k n |
D | k+1 n |
(3)用二项式系数表示
D | 3 n |
D | 2 1 |
D | 2 2 |
D | 0 1 |
D | 1 1 |
D | 2 1 |
C | 2 3 |
D | 2 3 |
D | 0 2 |
D | 1 2 |
D | 2 2 |
C | 2 4 |
D | 2 4 |
D | 0 3 |
D | 1 3 |
D | 2 3 |
C | 2 5 |
可得
D | 2 n-1 |
D | 0 n-2 |
D | 1 n-2 |
D | 2 n-2 |
C | 2 n-1 |
C | 2 n |
∵
D | 3 n |
D | 1 n-1 |
D | 2 n-1 |
D | 3 n-1 |
∴
D | 3 n |
D | 3 n-1 |
D | 1 n-1 |
D | 2 n-1 |
C | 1 n |
C | 2 n |
C | 2 n+1 |
∵
D | 3 3 |
D | 3 2 |
C | 2 4 |
D | 3 4 |
D | 3 3 |
C | 2 5 |
D | 3 5 |
D | 3 4 |
C | 2 6 |
D | 3 n |
D | 3 n-1 |
C | 2 n+1 |
∴
D | 3 n |
D | 3 2 |
C | 2 4 |
C | 2 5 |
C | 2 6 |
C | 2 n+1 |
=(
C | 3 5 |
C | 3 4 |
C | 3 6 |
C | 3 5 |
C | 3 7 |
C | 3 6 |
C | 3 n+2 |
C | 3 n+1 |
C | 3 n+2 |
C | 3 4 |
=
C | 3 n+2 |
∴
D | 3 n |
C | 3 n+2 |
C | 1 n |
点评:本题主要考查二项式定理的应用,组合数的计算公式的应用,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
下列选项中正确的是( )
A、命题p:?x0∈R,tanx0=1;命题q:?x∈R,x2-x+1>0,则命题“p∧?q”是真命题 | B、集合M={x|x2<4},N={x|x2-2x-3<0},则M∩N={x|-2<x<3} | C、命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0” | D、函数f(x)=x2+2(m-2)x+4在[1,+∞)上为增函数,则m的取值范围是m<1 |