题目内容

(x2+x+1)n=
D
0
n
x2n+
D
1
n
x2n-1+
D
2
n
x2n-2+…+
D
2n-1
n
x+
D
2n
n
的展开式中,把
D
0
n
D
1
n
D
2
n
,…,
D
2n
n
叫做三项式的n次系数列.
(1)写出三项式的2次系数列和3次系数列;
(2)列出杨辉三角形类似的表(0≤n≤4,n∈N),用三项式的n次系数表示
D
0
n+1
D
1
n+1
D
k+1
n+1
(1≤k≤2n-1);
(3)用二项式系数表示
D
3
n
分析:(1)由(x2+x+1)2=x4+x2+1+2x3+2x2+2x=x4+2x3+3x2+2x+1,求得2次系数列.同理根据(x2+x+1)3=(x4+2x3+3x2+2x+1)(x2+x+1)=x6+3x5+6x4+7x3+6x2+3x+1,求得3次系数列.
(2)如图所示:根据三项式的2次系数列和3次系数列的定义,可得结论.
(3)根据三项式的2次系数列和3次系数列的定义,再利用组合数公式的性质,可用二项式系数表示
D
3
n
解答:解:(1)在x2+x+1 )n=
D
0
n
x2 n+
D
1
n
x2 n-1+
D
2
n
x2 n-2+…+
D
2 n-1
n
x+
D
2 n
n
的展开式中,
∵(x2+x+1)2=x4+x2+1+2x3+2x2+2x=x4+2x3+3x2+2x+1,
D
0
2
=1 , 
D
1
2
=2 , 
D
2
2
=3 , 
D
3
2
=2 , 
D
4
2
=1

∵(x2+x+1)3=(x4+2x3+3x2+2x+1)(x2+x+1)=x6+3x5+6x4+7x3+6x2+3x+1,
D
0
3
=1 , 
D
1
3
=3 , 
D
2
3
=6 , 
D
3
3
=7 , 
D
4
3
=6 , 
D
5
3
=3 , 
D
6
3
=1

(2)列出杨辉三角形类似的表(0≤n≤4,n∈N):
    1    
   111   
  12321  
 1367631 
14101619161041
D
0
n+1
=
D
0
n
=0 , 
D
1
n+1
=
D
1
n
+
D
0
n
=n+1 , 
D
k+1
n+1
=
D
k-1
n
+
D
k
n
+
D
k+1
n
 ( 1≤k≤2 n-1 )

(3)用二项式系数表示
D
3
n

D
2
1
=1 , 
D
2
2
=
D
0
1
+
D
1
1
+
D
2
1
=3=
C
2
3
 , 
D
2
3
=
D
0
2
+
D
1
2
+
D
2
2
=6=
C
2
4

D
2
4
=
D
0
3
+
D
1
3
+
D
2
3
=10=
C
2
5
 , …

可得
D
2
n-1
=
D
0
n-2
+
D
1
n-2
+
D
2
n-2
=1+n-2+
C
2
n-1
=
C
2
n

D
3
n
=
D
1
n-1
+
D
2
n-1
+
D
3
n-1

D
3
n
-
D
3
n-1
=
D
1
n-1
+
D
2
n-1
=
C
1
n
+
C
2
n
-1
=
C
2
n+1
-1

D
3
3
-
D
3
2
=
C
2
4
-1
D
3
4
-
D
3
3
=
C
2
5
-1
D
3
5
-
D
3
4
=
C
2
6
-1
… , 
D
3
n
-
D
3
n-1
=
C
2
n+1
-1

D
3
n
-
D
3
2
=
C
2
4
+
C
2
5
+
C
2
6
+…+
C
2
n+1
-( n-2 )

=
C
3
5
-
C
3
4
 )+( 
C
3
6
-
C
3
5
 )+( 
C
3
7
-
C
3
6
 )+…+( 
C
3
n+2
-
C
3
n+1
 )-( n-2 )
=
C
3
n+2
-
C
3
4
-( n-2 )

=
C
3
n+2
-( n+2 )

D
3
n
=
C
3
n+2
-
C
1
n
点评:本题主要考查二项式定理的应用,组合数的计算公式的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网