题目内容

设向量
a
b
c
满足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
a
b
,|
a
|=1,则|
c
|=
 
分析:根据题意求出
c
,利用向量垂直的等价条件即数量积为0,再由数量积的运算求出向量
c
的模.
解答:解:由
a
+
b
+
c
=
0
可得,
c
=-(
a
+
b
),
∵(
a
-
b
)⊥
c
,∴(
a
-
b
)•[-(
a
+
b
)]=0,∴
a
2-
b
2=0,
又∵|
a
|=1,∴|
b
|=1,
a
b
,∴
c
2=[-(
a
+
b
)]2=
a
2+2
a
b
+
b
2=2,即|
c
|=
2

故答案为:
2
点评:本题主要考查了向量垂直的等价条件应用,根据题意和数量积的运算进行求解,也是常考查的题型,难度不大,注意向量之间的关系以及数量积和向量模的转换.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网