题目内容
【题目】已知曲线E的极坐标方程为4(ρ2-4)sin2θ=(16-ρ2)cos2θ,以极轴为x轴的非负半轴,极点O为坐标原点,建立平面直角坐标系.
(1)写出曲线E的直角坐标方程;
(2)若点P为曲线E上动点,点M为线段OP的中点,直线l的参数方程为(t为参数),求点M到直线l的距离的最大值.
【答案】(1)x2+4y2=16;(2)
【解析】
(1)利用极坐标和直角坐标的互化公式求解;
(2)先求出点M的坐标,再利用点到直线的距离公式可求最值.
(1)由4(ρ24)sin2θ=(16ρ2)cos2θ得4ρ2sin2θ+ρ2cos2θ=16,利用互化公式可得x2+4y2=16;
所以曲线E的直角坐标方程为:x2+4y2=16.
(2)直线l的普通方程为:x2y+3=0,
设P(4cosα,2sinα),则M(2cosα,sinα)
点M到直线l的距离d==≤=
【题目】某公司近年来科研费用支出万元与公司所获得利润万元之间有如下的统计数据:
x | 2 | 3 | 4 | 5 |
Y | 18 | 27 | 32 | 35 |
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)试根据(1)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润.
参考公式:用最小二乘法求线性回归方程的系数公式:
参考数据:2×18+3×27+4×32+5×35=420
【题目】某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,
方案一:每满200元减50元;
方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、l个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)
红球个数 | 3 | 2 | 1 | 0 |
实际付款 | 半价 | 7折 | 8折 | 原价 |
(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;
(2)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?