题目内容
【题目】设函数,,,.
(1)用函数单调性的定义在在证明:函数在区间上单调递减,在上单调递增;
(2)若对任意满足的实数,都有成立,求证:.
【答案】详见解析
【解析】
(1)利用单调性的定义,在区间(0,1上任取,且,判断和0的大小即可,同理可证在1,+∞)上单调递增;
(2)由结合条件可得,令,可得在上恒成立,令,,利用一次函数单调性求解即可.
证明: (1)在区间(0,1上任取,且,则有
∵,且,∴
所以
即在区间(0,1上是减函数.
同理可证在1,+∞)上单调递增
(2)∵ ,即,又因为,
∴ ,即.
令,由(1)可得,即,
即在上恒成立
法1:令,
因为,所以h(t)是关于t的一次函数
所以,要想恒成立
必须,又
所以
法2:
又,所以
所以
又,所以
所以
【题目】某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年 份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
=,=-.
【题目】为了调查每天人们使用手机的时间,我校某课外兴趣小组在天府广场随机采访男性、女性用户各50 名,其中每天玩手机超过6小时的用户列为“手机控”,否则称其为“非手机控”,调查结果如下:
手机控 | 非手机控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有60%的把握认为“手机控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取5人中“手机控”和“非手机控”的人数;
(3)从(2)中抽取的5人中再随机抽取3人,记这3人中“手机控”的人数为X,试求X的分布列与数学期望. 参考公式: .
参考数据:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.456[ | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |