题目内容
设数列{an}的前n项和为Sn,已知a1=a2=1,bn=nSn+(n+2)an,数列{bn}是公差为d的等差数列,n∈N*.
(1)求d的值;
(2)求数列{an}的通项公式;
(3)求证:(a1a2…an)•(S1S2…Sn)<
.
(1)求d的值;
(2)求数列{an}的通项公式;
(3)求证:(a1a2…an)•(S1S2…Sn)<
22n+1 | (n+1)(n+2) |
分析:(1)根据a1=a2=1,bn=nSn+(n+2)an,求出数列{bn}的前两项,即可求得数列的公差;
(2)先求数列{bn}的通项公式,进而再利用条件,两式相减,即可求得数列{an}的通项公式;
(3)先利用基本不等式,得出0<anSn≤4•
,进而相乘,即可证明.
(2)先求数列{bn}的通项公式,进而再利用条件,两式相减,即可求得数列{an}的通项公式;
(3)先利用基本不等式,得出0<anSn≤4•
n |
n+2 |
解答:解:(1)∵a1=a2=1,bn=nSn+(n+2)an,
∴b1=S1+3a1,b2=2S2+4a2,
∴d=b2-b1=4
(2)∵数列{bn}是公差为4的等差数列,b1=4
∴bn=4n
∵bn=nSn+(n+2)an,
∴4n=nSn+(n+2)an,
∴Sn+
an=4①
当n≥2时,Sn-1+
an-1=4②
①-②:Sn-Sn-1+
an-
an-1=0
∴an+
an-
an-1=0
∴
=
•
∴
=
×
×…
=
•n
∵a1=1,∴an=
(3)∵Sn+
an=4,an>0,Sn>0
∴
≤
=2
∴0<anSn≤4•
∴(a1a2…an)•(S1S2…Sn)≤
③
∵n=1,Sn≠
an
∴等号不成立
∴(a1a2…an)•(S1S2…Sn)<
∴b1=S1+3a1,b2=2S2+4a2,
∴d=b2-b1=4
(2)∵数列{bn}是公差为4的等差数列,b1=4
∴bn=4n
∵bn=nSn+(n+2)an,
∴4n=nSn+(n+2)an,
∴Sn+
n+2 |
n |
当n≥2时,Sn-1+
n+1 |
n-1 |
①-②:Sn-Sn-1+
n+2 |
n |
n+1 |
n-1 |
∴an+
n+2 |
n |
n+1 |
n-1 |
∴
an |
an-1 |
1 |
2 |
n |
n-1 |
∴
an |
a1 |
an |
an-1 |
an-1 |
an-2 |
a2 |
a1 |
1 |
2n-1 |
∵a1=1,∴an=
n |
2n-1 |
(3)∵Sn+
n+2 |
n |
∴
Sn×
|
Sn+
| ||
2 |
∴0<anSn≤4•
n |
n+2 |
∴(a1a2…an)•(S1S2…Sn)≤
22n+1 |
(n+1)(n+2) |
∵n=1,Sn≠
n+2 |
n |
∴等号不成立
∴(a1a2…an)•(S1S2…Sn)<
22n+1 |
(n+1)(n+2) |
点评:本题重点考查数列的通项,考查不等式的证明,解题的关键是挖掘数列的通项与前n项和的关系.
练习册系列答案
相关题目