题目内容

设数列{an}的前n项和为Sn,已知a1=a2=1,bn=nSn+(n+2)an,数列{bn}是公差为d的等差数列,n∈N*
(1)求d的值;
(2)求数列{an}的通项公式;
(3)求证:(a1a2an)•(S1S2Sn)<
22n+1(n+1)(n+2)
分析:(1)根据a1=a2=1,bn=nSn+(n+2)an,求出数列{bn}的前两项,即可求得数列的公差;
(2)先求数列{bn}的通项公式,进而再利用条件,两式相减,即可求得数列{an}的通项公式;
(3)先利用基本不等式,得出0<anSn≤4•
n
n+2
,进而相乘,即可证明.
解答:解:(1)∵a1=a2=1,bn=nSn+(n+2)an
∴b1=S1+3a1,b2=2S2+4a2
∴d=b2-b1=4
(2)∵数列{bn}是公差为4的等差数列,b1=4
∴bn=4n
∵bn=nSn+(n+2)an
∴4n=nSn+(n+2)an
Sn+
n+2
n
an=4

当n≥2时,Sn-1+
n+1
n-1
an-1=4

①-②:Sn-Sn-1+
n+2
n
an-
n+1
n-1
an-1=0

an+
n+2
n
an-
n+1
n-1
an-1=0

an
an-1
=
1
2
n
n-1

an
a1
=
an
an-1
× 
an-1
an-2
×…
a2
a1
=
1
2n-1
•n

∵a1=1,∴an=
n
2n-1

(3)∵Sn+
n+2
n
an=4,an>0,Sn>0

Sn×
n+2
n
an
Sn+
n+2
n
an
2
=2

0<anSn≤4•
n
n+2

(a1a2an)•(S1S2Sn)≤
22n+1
(n+1)(n+2)

∵n=1,Sn
n+2
n
an

∴等号不成立
(a1a2an)•(S1S2Sn)<
22n+1
(n+1)(n+2)
点评:本题重点考查数列的通项,考查不等式的证明,解题的关键是挖掘数列的通项与前n项和的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网