题目内容
【题目】已知函数().
(Ⅰ)若曲线在点处的切线与轴垂直,求的值;
(Ⅱ)若函数有两个极值点,求的取值范围;
(Ⅲ)证明:当时, .
【答案】(Ⅰ).(Ⅱ).(Ⅲ)见解析.
【解析】试题分析:(Ⅰ)求导函数,利用函数在点处的切线与轴垂直,可得切线的斜率,从而可求 的值;
(Ⅱ)由(Ⅰ)知,若函数有两个极值点,则,即有两个不同的根,且的值在根的左、右两侧符号相反.
令,讨论其性质即可得到的取值范围;
(Ⅲ)令(),则, .
令,讨论的性质可得以时, ,即时, .
试题解析:((Ⅰ)由得.
因为曲线在点处的切线与轴垂直,
所以,解得.
(Ⅱ)由(Ⅰ)知,若函数有两个极值点,则,即有两个不同的根,且的值在根的左、右两侧符号相反.
令,则,
所以当时, , 单调递减;当时, , 单调递增.
又当时, ; 时, ; 时, ; 时, ,
所以.即所求实数的取值范围是.
(Ⅲ)证明:令(),则, .
令,则 ,
因为,所以, , , ,
所以,即在时单调递增,
又,所以时, ,即函数在时单调递增.
所以时, ,即时, .
【题目】某公司为了解用户对其产品的满意度,从两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到地区用户满意度评分的频率分布直方图和地区用户满意度评分的频数分布表.
地区用户满意度评分的频率分布直方图
地区用户满意度评分的频数分布表
满意度评分分组 | |||||
频数 | 2 | 8 | 14 | 10 | 6 |
(1)在答题卡上作出地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);
(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
估计哪个地区的满意度等级为不满意的概率大?说明理由.
【题目】2017年“一带一路”国际合作高峰论坛于今年5月14日至15日在北京举行.为高标准完成高峰论坛会议期间的志愿服务工作,将从27所北京高校招募大学生志愿者,某调查机构从是否有意愿做志愿者在某高校访问了80人,经过统计,得到如下丢失数据的列联表:(,表示丢失的数据)
无意愿 | 有意愿 | 总计 | |
男 | 40 | ||
女 | 5 | ||
总计 | 25 | 80 |
(1)求出的值,并判断:能否有99.9%的把握认为有意愿做志愿者与性别有关;
(2)若表中无意愿做志愿者的5个女同学中,3个是大学三年级同学,2个是大学四年级同学.现从这5个同学中随机选2同学进行进一步调查,求这2个同学是同年级的概率.
附参考公式及数据: ,其中.
0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |
【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的城市和交通拥堵严重的城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:
(Ⅰ)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求具体解答过程,给出结论即可);
(Ⅱ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认同”,请根据此样本完成此列联表,并局此样本分析是否有95%的把握认为城市拥堵与认可共享单车有关;
(Ⅲ)若此样本中的城市和城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自城市的概率是多少?
合计 | |||
认可 | |||
不认可 | |||
合计 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |