题目内容

【题目】(本小题满分12分)已知等差数列{an}的前n项和为Sn,且a3=5S15="225."

1)求数列{an}的通项an

2)设bn=+2n,求数列{bn}的前n项和Tn.

【答案】解:()设等差数列{an}首项为a1,公差为d,由题意,得

解得

∴an=2n1

=

【解析】

试题(1)由数列为等差数列的通项公式及求和公式,可得关于公差与首项的方程组,由方程组即可求出首项与公差,在由通项公式即可得结论.

2)由(1)可得,因此数列的通项是由一个等比数列与一个等差数列的和构成,分别对两个数列求和,再分别利用等比数列求和公式与等差数列求和公式,求出两个数列的和,再将两个和式相加即可得到结论.

试题解析:(1)设数列的公差为d,根据题意得2

解得:4

5

2)由(1)可得

6

8

10

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网