题目内容
11.若不等式$\frac{1}{x-y}$+$\frac{1}{y-z}$+$\frac{λ}{z-x}$≥0对x>y>z恒成立,则λ的取值范围是(-∞,4].分析 由题意得到$\frac{(x-z)^{2}}{(x-y)(y-z)}$≥λ,巧设x-y=a,y-z=b,利用基本不等式即可求出λ的范围.
解答 解:∵$\frac{1}{x-y}$+$\frac{1}{y-z}$+$\frac{λ}{z-x}$≥0,
∴$\frac{1}{x-y}$+$\frac{1}{y-z}$≥-$\frac{λ}{z-x}$,
∵x>y>z,
∴$\frac{z-x}{x-y}$+$\frac{z-x}{y-z}$≤-λ,
∴$\frac{(x-z)(z-x)}{(x-y)(y-z)}$≤-λ,
∴$\frac{(x-z)^{2}}{(x-y)(y-z)}$≥λ,
此时令x-y=a,y-z=b,
上式就变成了$\frac{(a+b)^{2}}{ab}$≥λ,
∵a+b≥2$\sqrt{ab}$,
∴(a+b)2≥4ab,
∴λ≤4,当且仅当a=b(即x-y=y-z)时成立,
∴λ的取值范围是(-∞,4],
故答案为:(-∞,4].
点评 本题考查了基本不等式的应用,本题的关键是令x-y=a,y-z=b,属于中档题.
练习册系列答案
相关题目
1.函数f(x)=Asin(ωx+φ)+b图象的一部分如图所示,则f(x)的解析式为( )
A. | y=sin2x-2 | B. | y=2cos3x-1 | C. | y=sin(2x-$\frac{π}{5}$)+1 | D. | y=1-sin(2x-$\frac{π}{5}$) |
2.某多面体的三视图如图所示,则该多面体的各条棱中,最长的棱的长度为( )
A. | 2$\sqrt{5}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 2 |