题目内容

如图,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点;

    (1)求

    (2)求

    (3)

    (4)求CB1与平面A1ABB1所成的角的余弦值.

 

【答案】

如图,建立空间直角坐标系O—xyz.(1)依题意得B(0,1,0)、N(1,0,1)

∴| |=.

(2)依题意得A1(1,0,2)、B(0,1,0)、C(0,0,0)、B1(0,1,2)

={-1,-1,2},={0,1,2,},·=3,||=,||=

∴cos<>=.

(3)证明:依题意,得C1(0,0,2)、M(,2),={-1,1,2},={,0}.∴·=-+0=0,∴,∴A1B⊥C1M.

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网