题目内容

【题目】已知数列{an},an=(2n+m)+(﹣1)n(3n﹣2)(m∈N* , m与n无关),若 a2i1≤k2﹣2k﹣1对一切m∈N*恒成立,则实数k的取值范围为

【答案】(﹣∞,﹣1]∪[3,+∞)
【解析】解:a2i1=2(2i﹣1)+m+(﹣1)2i1[3(2i﹣1)﹣2]=4i﹣2+m﹣(6i﹣5)=﹣2i+m+3, a2i1= (﹣2i+m+3)=﹣2 i+2m(m+3)= +2m2+6m=﹣2m2+4m,
∴﹣2m2+4m≤k2﹣2k﹣1恒成立,
∵﹣2m2+4m=﹣2(m﹣1)2+2≤2,
∴k2﹣2k﹣1≥2恒成立,即k2﹣2k﹣3≥0,
解得k≥3或k≤﹣1.
所以答案是(﹣∞,﹣1]∪[3,+∞).
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网