题目内容
【题目】如图所示,在四棱锥中,底面ABCD为直角梯形,,,,点E为AD的中点,,平面ABCD,且
(1)求证:;
(2)线段PC上是否存在一点F,使二面角的余弦值是?若存在,请找出点F的位置;若不存在,请说明理由.
【答案】(1)见证明;(2)见解析
【解析】
(1)由题意,证得,再由线面垂直的性质,证得,利用线面垂直的判定定理,即可证得平面PEC,进而得到.
(2)由(1)建立以H为坐标原点,HB、HC、HP所在直线分别为x,y,z轴的坐标系,由与共线,得,再求得平面CPD和平面CPD的一个法向量,利用向量的夹角公式即可求解.
证明:(1)∵,,
∴,,
E为AD的中点,,
≌,,
,
,
,平面ABCD,平面ABCD,,
又,且PH,平面PEC,平面PEC,
又平面PEC,.
解:(2)由(1)可知∽,
由题意得,,
,,,,,
、EC、BD两两垂直,建立以H为坐标原点,HB、HC、HP所在直线分别为x,y,z轴的坐标系,
,,,,,
假设线段PC上存在一点F满足题意,
与共线,
∴存在唯一实数,,满足,解得,
设向量为平面CPD的一个法向量,
且,,
∴,取,得,
同理得平面CPD的一个法向量,
∵二面角的余弦值是,
∴,
由,解得
练习册系列答案
相关题目
【题目】总体由编号为01,02,03,,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( )
78 16 65 72 08 02 63 14 07 02 43 69 69 38 74 |
32 04 94 23 49 55 80 20 36 35 48 69 97 28 01 |
A. 05 B. 09 C. 07 D. 20