题目内容
设数列{an}的前n项和为Sn,数列{bn}满足:bn=nan,且数列{bn}的前n项和为(n-1)Sn+2n(n∈N*).(1)求a1,a2的值;
(2)求证:数列{Sn+2}是等比数列;
(3)抽去数列{an}中的第1项,第4项,第7项,…,第3n-2项,…余下的项顺序不变,组成一个新数列{cn},若{cn}的前n项和为Tn,求证:
12 |
5 |
Tn+1 |
Tn |
11 |
3 |
分析:(1)由题意得:a1+2a2+3a3+…+nan=(n-1)Sn+2n,再由n=1和n=2分别求出a1和a2.
(2)由a1+2a2+3a3+…+nan=(n-1)Sn+2n得:a1+2a2+3a3+…+nan+(n+1)an+1=nSn+1+2(n+1),所以Sn+1=2Sn+2,Sn+1+2=2(Sn+2),由S1+2=a1+2=4≠0知,列{Sn+2}是以4为首项,2为公比的等比数列.
(3)由Sn+2=4•2n-1知数列{cn}为22,23,25,26,28,29,它的奇数项组成以4为首项、公比为8的等比数列;偶数项组成以8为首项、公比为8的等比数列.由此入手能证明
<
≤
.
(2)由a1+2a2+3a3+…+nan=(n-1)Sn+2n得:a1+2a2+3a3+…+nan+(n+1)an+1=nSn+1+2(n+1),所以Sn+1=2Sn+2,Sn+1+2=2(Sn+2),由S1+2=a1+2=4≠0知,列{Sn+2}是以4为首项,2为公比的等比数列.
(3)由Sn+2=4•2n-1知数列{cn}为22,23,25,26,28,29,它的奇数项组成以4为首项、公比为8的等比数列;偶数项组成以8为首项、公比为8的等比数列.由此入手能证明
12 |
5 |
Tn+1 |
Tn |
11 |
3 |
解答:解:(1)由题意得:a1+2a2+3a3+…+nan=(n-1)Sn+2n;(1分)
当n=1时,则有:a1=(1-1)S1+2,解得:a1=2;
当n=2时,则有:a1+2a2=(2-1)S2+4,即2+2a2=(2+a2)+4,解得:a2=4;
∴a1=2,a2=4(2分)
(2)由a1+2a2+3a3+…+nan=(n-1)Sn+2n①得:a1+2a2+3a3+…+nan+(n+1)an+1=nSn+1+2(n+1)②(3分)
②-①得:(n+1)an+1=nSn+1-(n-1)Sn+2,
即:(n+1)(Sn+1-Sn)=nSn+1-(n-1)Sn+2即:Sn+1=2Sn+2;(5分)
∴Sn+1+2=2(Sn+2),由S1+2=a1+2=4≠0知:
数列{Sn+2}是以4为首项,2为公比的等比数列.(8分)
(3)由(2)知:Sn+2=4•2n-1,即Sn=4•2n-1-2=2n+1-2(9分)
当n≥2时,an=Sn-Sn-1=(2n+1-2)-(2n-2)=2n对n=1也成立,
即an=2n(n∈N*).(10分)
∴数列{cn}为22,23,25,26,28,29,
它的奇数项组成以4为首项、公比为8的等比数列;偶数项组成以8为首项、公比为8的等比数列;(11分)
∴当n=2k-1(k∈N*)时,Tn=(c1+c3+…+c2k-1)+(c2+c4+…+c2k-2)=(22+25+…+23k-1)+(23+26+…+23k-3)
=
+
=
•8k-
,Tn+1=Tn+cn+1=
•8k-
+23k=
•8k-
,
∴
=
=
+
,∵ 5•8k-12≥28 & ∴
<
≤3(14分)
∴当n=2k(k∈N*)时,Tn=(c1+c3+…+c2k-1)+(c2+c4+…+c2k)=(22+25+…+23k-1)+(23+26+…+23k)
=
+
=
•8k-
,
Tn+1=Tn+cn+1=
•8k-
+23k+2=
•8k-
,
∴
=
=
+
,∵8k-1≥7∴
<
≤
∴
<
≤
.(16分)
当n=1时,则有:a1=(1-1)S1+2,解得:a1=2;
当n=2时,则有:a1+2a2=(2-1)S2+4,即2+2a2=(2+a2)+4,解得:a2=4;
∴a1=2,a2=4(2分)
(2)由a1+2a2+3a3+…+nan=(n-1)Sn+2n①得:a1+2a2+3a3+…+nan+(n+1)an+1=nSn+1+2(n+1)②(3分)
②-①得:(n+1)an+1=nSn+1-(n-1)Sn+2,
即:(n+1)(Sn+1-Sn)=nSn+1-(n-1)Sn+2即:Sn+1=2Sn+2;(5分)
∴Sn+1+2=2(Sn+2),由S1+2=a1+2=4≠0知:
数列{Sn+2}是以4为首项,2为公比的等比数列.(8分)
(3)由(2)知:Sn+2=4•2n-1,即Sn=4•2n-1-2=2n+1-2(9分)
当n≥2时,an=Sn-Sn-1=(2n+1-2)-(2n-2)=2n对n=1也成立,
即an=2n(n∈N*).(10分)
∴数列{cn}为22,23,25,26,28,29,
它的奇数项组成以4为首项、公比为8的等比数列;偶数项组成以8为首项、公比为8的等比数列;(11分)
∴当n=2k-1(k∈N*)时,Tn=(c1+c3+…+c2k-1)+(c2+c4+…+c2k-2)=(22+25+…+23k-1)+(23+26+…+23k-3)
=
4(1-8k) |
1-8 |
8(1-8k-1) |
1-8 |
5 |
7 |
12 |
7 |
5 |
7 |
12 |
7 |
12 |
7 |
12 |
7 |
∴
Tn+1 |
Tn |
12•8k-12 |
5•8k-12 |
12 |
5 |
84 |
5(5•8k-12) |
12 |
5 |
Tn+1 |
Tn |
∴当n=2k(k∈N*)时,Tn=(c1+c3+…+c2k-1)+(c2+c4+…+c2k)=(22+25+…+23k-1)+(23+26+…+23k)
=
4(1-8k) |
1-8 |
8(1-8k) |
1-8 |
12 |
7 |
12 |
7 |
Tn+1=Tn+cn+1=
12 |
7 |
12 |
7 |
40 |
7 |
12 |
7 |
∴
Tn+1 |
Tn |
40•8k-12 |
12•8k-12 |
10 |
3 |
7 |
3(8k-1) |
10 |
3 |
Tn+1 |
Tn |
11 |
3 |
12 |
5 |
Tn+1 |
Tn |
11 |
3 |
点评:本题考查数列的性质和综合运用,解题时要认真审题,仔细解答,注意公式的灵活运用.
练习册系列答案
相关题目