题目内容
【题目】已知函数(其中为自然对数的底数,).
(1)若仅有一个极值点,求的取值范围;
(2)证明:当时,有两个零点,且.
【答案】(1);(2)证明过程见解析.
【解析】
试题分析:(1)求出函数的导函数,转化不等式,再通过与的大小讨论即可求的取值范围;(2)通过的范围及的零点个数,即可确定函数恒成立的条件,通过构造函数的方法,转化成利用导函数求恒成立问题.
试题解析:(1),
由得到或 (*)
由于仅有一个极值点,
关于的方程(*)必无解,
①当时,(*)无解,符合题意,
②当时,由(*)得,故由得,
由于这两种情况都有,当时,,于是为减函数,当时,,于是为增函数,∴仅为的极值点,综上可得的取值范围是;
(2)由(1)当时,为的极小值点,
又∵对于恒成立,
对于恒成立,
对于恒成立,
∴当时,有一个零点,当时,有另一个零点,
即,
且,(#)
所以,
下面再证明,即证,
由得,
由于为减函数,
于是只需证明,
也就是证明,
,
借助(#)代换可得,
令,
则,
∵为的减函数,且,
∴在恒成立,
于是为的减函数,即,
∴,这就证明了,综上所述,.
【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,
规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,
得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【题目】某车间20名工人年龄数据如下表:
年龄(岁) | 19 | 24 | 26 | 30 | 34 | 35 | 40 | 合计 |
工人数(人) | 1 | 3 | 3 | 5 | 4 | 3 | 1 | 20 |
(1)求这20名工人年龄的众数与平均数;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.