题目内容
【题目】如图在直角中,为直角,,,分别为,的中点,将沿折起,使点到达点的位置,连接,,为的中点.
(Ⅰ)证明:面;
(Ⅱ)若,求二面角的余弦值.
【答案】(Ⅰ)详见解析;(Ⅱ).
【解析】
(Ⅰ)取中点,连结、,四边形是平行四边形,由,,得,从而,,求出,由此能证明.
(Ⅱ)以为原点,、、所在直线分别为,,轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.
证明:(Ⅰ )取中点,连结、,
∵ ,,
∴ 四边形是平行四边形,
∵ ,,,
∴ ,
∴ ,∴,
在中,,
又∵ 为的中点,∴,
又∵ ,∴.
解:(Ⅱ)∵,,,
∴ ,
以为原点,、、所在直线分别为,,轴,建立空间直角坐标系,
设,则,,,,
∴ ,,,
设面的法向量,
则,取,得,
同理,得平面的法向量,
设二面角的平面角为,
则,
∴ 二面角的余弦值为.
练习册系列答案
相关题目