题目内容

19.设ξ~N(1,σ2),则函数f(x)=x2+2x+ξ不存在零点的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 函数f(x)=x2+2x+ξ不存在零点,可得ξ>1,根据随机变量ξ服从正态分布N(1,σ2),可得曲线关于直线x=1对称,从而可得结论.

解答 解:∵函数f(x)=x2+2x+ξ不存在零点,
∴△=4-4ξ<0,∴ξ>1
∵随机变量ξ服从正态分布N(1,σ2),
∴曲线关于直线x=1对称
∴P(ξ>1)=$\frac{1}{2}$
故选:C.

点评 本题考查函数的零点,考查正态分布曲线的对称性,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网