题目内容
函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是( )
A.(-∞,0],(-∞,1] | B.(-∞,0],[1,+∞) |
C.[0,+∞),(-∞,1] | D.[0,+∞),[1,+∞) |
C
解析
练习册系列答案
相关题目
下列函数中,不具有奇偶性的函数是 ( )
A. | B. |
C. | D. |
下列函数在上单调递增的是( )
A. | B. | C. | D. |
已知函数f(x)=lg|x|,x∈R且x≠0,则f(x)是( )
A.奇函数且在(0,+∞)上单调递增 |
B.偶函数且在(0,+∞)上单调递增 |
C.奇函数且在(0,+∞)上单调递减 |
D.偶函数且在(0,+∞)上单调递减 |
设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(x)=f()的所有x之和为( )
A.-3 | B.3 | C.-8 | D.8 |
已知函数y=f(x)满足:对任意的x1<x2≤-1,[f(x2)-f(x1)](x2-x1)>0恒成立,则f(-2),f(-),f(-1)的大小关系为( )
A.f(-2)<f(-)<f(-1) |
B.f(-2)>f(-)>f(-1) |
C.f(-2)>f(-1)>f(-) |
D.f(-)>f(-2)>f(-1) |
已知函数f(x)=,若f(a)=,则f(-a)=( )
A. | B.- |
C. | D.- |
已知函数y=f(x)是定义在R上的奇函数,且当x<0时,不等式f(x)+xf′(x)<0成立,若a=30.3f(30.3),b=logπ3f(logπ3),c=log3f,则a,b,c间的大小关系是( ).
A.a>b>c | B.c>b>a |
C.c>a>b | D.a>c>b |