题目内容
已知函数y=f(x)是定义在R上的奇函数,且当x<0时,不等式f(x)+xf′(x)<0成立,若a=30.3f(30.3),b=logπ3f(logπ3),c=log3f,则a,b,c间的大小关系是( ).
A.a>b>c | B.c>b>a |
C.c>a>b | D.a>c>b |
C
解析
练习册系列答案
相关题目
已知函数,则的单调递减区间为( )
A.[0,1) | B.(-∞,0) |
C. | D.(-∞,1)和(1,+∞) |
已知函数,若恒成立,则实数a的取值范围是( )
A. | B. |
C. | D. |
函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是( )
A.(-∞,0],(-∞,1] | B.(-∞,0],[1,+∞) |
C.[0,+∞),(-∞,1] | D.[0,+∞),[1,+∞) |
下列函数中,不满足f(2x)=2f(x)的是( ).
A.f(x)=|x| | B.f(x)=x-|x| | C.f(x)=x+1 | D.f(x)=-x |
下列函数中,在区间(0,+∞)上为增函数的是 ( ).
A.y=lg(x+2) | B.y=- |
C.y=x | D.y=x+ |
f(x)=则下列关于y=f[f(x)]-2的零点个数判断正确( ).
A.当k=0时,有无数个零点, |
B.当k<0时,有3个零点 |
C.当k>0时,有3个零点 |
D.无论k取何值,都有4个零点 |