题目内容
【题目】在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)﹣f(x).已知某服装公司每天最多
生产100件.生产x件的收入函数为R(x)=300x﹣2x2(单位元),其成本函数为C(x)=50x+300(单位:元),利润等于收入与成本之差.
(1)求出利润函数p(x)及其边际利润函数Mp(x);
(2)分别求利润函数p(x)及其边际利润函数Mp(x)的最大值;
(3)你认为本题中边际利润函数Mp(x)最大值的实际意义是什么?
【答案】(1);(2)244;(3)见解析
【解析】试题分析:(1)利用求出表达式,利用边际函数求出表达式即可;(2)利用一次函数与二次函数的性质求解最值即可;(3)边际利润函数最大值说明生产第二件衣服与生产第一件衣服的利润差的最大值.
试题解析:(1), , , , ,
(2), , ,故当或时, (元)因为为减函数,当时有最大值244
(3)当时边际利润函数取最大值,说明生产第二件衣服与生产第一件衣服的利润差最大.
练习册系列答案
相关题目
【题目】某学校为了调查喜欢语文学科与性别的关系,随机调查了一些学生情况,具体数据如表:
调查统计 | 不喜欢语文 | 喜欢语文 |
男 | 13 | 10 |
女 | 7 | 20 |
为了判断喜欢语文学科是否与性别有关系,根据表中的数据,得到K2的观测值k= ≈4.844,因为k≥3.841,根据下表中的参考数据:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
判定喜欢语文学科与性别有关系,那么这种判断出错的可能性为( )
A.95%
B.50%
C.25%
D.5%