题目内容
【题目】设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2 , x∈R,则实数a= , b= .
【答案】-2;1
【解析】解:∵f(x)=x3+3x2+1,
∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)
=x3+3x2﹣(a3+3a2)
∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x﹣a2b,
且f(x)﹣f(a)=(x﹣b)(x﹣a)2 ,
∴ ,解得 或 (舍去),
故答案为:﹣2;1.
根据函数解析式化简f(x)﹣f(a),再化简(x﹣b)(x﹣a)2 , 根据等式两边对应项的系数相等列出方程组,求出a、b的值.
练习册系列答案
相关题目