题目内容
已知a,b,c为正实数,a+b+c=1. 求证:
(1)a2+b2+c2≥
(2)≤6
(1)a2+b2+c2≥
(2)≤6
证明略
(1)证法一:a2+b2+c2-=(3a2+3b2+3c2-1)
=[3a2+3b2+3c2-(a+b+c)2]
=[3a2+3b2+3c2-a2-b2-c2-2ab-2ac-2bc]
=[(a-b)2+(b-c)2+(c-a)2]≥0 ∴a2+b2+c2≥
证法二:∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
≤a2+b2+c2+a2+b2+a2+c2+b2+c2
∴3(a2+b2+c2)≥(a+b+c)2="1 " ∴a2+b2+c2≥
证法三: ∵∴a2+b2+c2≥
∴a2+b2+c2≥
证法四:设a=+α,b=+β,c=+γ.
∵a+b+c=1,∴α+β+γ=0
∴a2+b2+c2=(+α)2+(+β)2+(+γ)2
=+ (α+β+γ)+α2+β2+γ2
=+α2+β2+γ2≥
∴a2+b2+c2≥
∴原不等式成立.
证法二:
∴≤<6
∴原不等式成立.
=[3a2+3b2+3c2-(a+b+c)2]
=[3a2+3b2+3c2-a2-b2-c2-2ab-2ac-2bc]
=[(a-b)2+(b-c)2+(c-a)2]≥0 ∴a2+b2+c2≥
证法二:∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
≤a2+b2+c2+a2+b2+a2+c2+b2+c2
∴3(a2+b2+c2)≥(a+b+c)2="1 " ∴a2+b2+c2≥
证法三: ∵∴a2+b2+c2≥
∴a2+b2+c2≥
证法四:设a=+α,b=+β,c=+γ.
∵a+b+c=1,∴α+β+γ=0
∴a2+b2+c2=(+α)2+(+β)2+(+γ)2
=+ (α+β+γ)+α2+β2+γ2
=+α2+β2+γ2≥
∴a2+b2+c2≥
∴原不等式成立.
证法二:
∴≤<6
∴原不等式成立.
练习册系列答案
相关题目