题目内容
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2·cosB-sin(A-B)sinB+cos(A+C)=-.
(1)求cos A的值;
(2)若a=4,b=5,求在方向上的投影.
【答案】(1)-(2)
【解析】
(1)由2cos2cosB-sin(A-B)sinB+cos(A+C)=-,得
[cos(A-B)+1]cosB-sin(A-B)sinB-cosB=-,
∴cos(A-B)cosB-sin(A-B)sinB=-.
则cos(A-B+B)=-,即cosA=-.
(2)由cosA=-,0<A<π,得sinA=,
由正弦定理,有,所以,sinB=.
由题知a>b,则A>B,故B=,
根据余弦定理,有(4)2=52+c2-2×5c×,
解得c=1或c=-7(舍去).
故向量在方向上的投影为||cosB=.
【题目】已知椭圆的方程为(),其离心率,分别为椭圆的左、右焦点,为椭圆上的点(不在轴上),周长为6.过椭圆右焦点 的直线与椭圆交于两点,为坐标原点,面积为.
(1)求椭圆的标准方程:
(2)求直线的方程.
【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对40名小学六年级学生进行了问卷调查,并得到如下列联表.平均每天喝以上为“常喝”,体重超过为“肥胖”.已知在全部40人中随机抽取1人,抽到肥胖学生的概率为.
常喝 | 不常喝 | 合计 | |
肥胖 | 3 | ||
不肥胖 | 5 | ||
合计 | 40 |
(1)请将上面的列联表补充完整;
(2)是否有的把握认为肥胖与常喝碳酸饮料有关?请说明你的理由.
参考公式:
①卡方统计量,其中为样本容量;
②独立性检验中的临界值参考表:
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |