题目内容

有驱虫药1618和1573各3杯,从中随机取出3杯称为一次试验(假定每杯被取到的概率相等),将1618全部取出称为试验成功.
(1)求恰好在第3次试验成功的概率(要求将结果化为最简分数).
(2)若试验成功的期望值是2,需要进行多少次相互独立重复试验?

(1)试验一次就成功的概率为; (2)4.

解析试题分析:(1) 从6杯中任选3杯,不同选法共有种,而选到的3杯都是1618的选法只有1种,由古典概型概率的求法可得试验一次就成功的概率为.恰好在第3次试验成功相当于前两次试验都没成功,第3次才成功.由于成功的概率为,所以一次试验没有成功的概率为,三次相乘即得所求概率.(2)该例是一个二项分布,二项分布的期望是,解此方程即可得次数.
试题解析:(1)从6杯中任选3杯,不同选法共有种,而选到的3杯都是1618的选法只有1种,从而试验一次就成功的概率为.恰好在第3次试验成功相相当于前两次试验都没成功,第3次才成功,故概率为.
(2)假设连续试验次,则试验成功次数,从而其期望为,再由可解出.
考点:1、古典概型;2、二项分布及其期望.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网