题目内容

【题目】函数y=f(x)导函数的图象如图所示,则下列说法错误的是( )

A.(﹣1,3)为函数y=f(x)的递增区间
B.(3,5)为函数y=f(x)的递减区间
C.函数y=f(x)在x=0处取得极大值
D.函数y=f(x)在x=5处取得极小值

【答案】C
【解析】解:由函数y=f(x)导函数的图象可知:
当x<﹣1及3<x<5时,f′(x)<0,f(x)单调递减;
当﹣1<x<3及x>5时,f′(x)>0,f(x)单调递增.
所以f(x)的单调减区间为(﹣∞,﹣1),(3,5);
单调增区间为(﹣1,3),(5,+∞),
f(x)在x=﹣1,5取得极小值,在x=3处取得极大值,
故选项C错误;
故选:C.
【考点精析】通过灵活运用利用导数研究函数的单调性,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网