题目内容

一个几何体的三视图如图所示,其中正视图和侧视图是腰长为6的两个全等的等腰直角三角形.

(Ⅰ)请画出该几何体的直观图,并求出它的体积;

(Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD-A1B1C1D1?试画出图形;

(Ⅲ)在(Ⅱ)的情形下,设正方体ABCD-A1B1C1D1的棱CC1的中点为E,求平面AB1E与平面ABCD所成二面角的余弦值.

答案:
解析:

  (Ⅰ)该几何体的直观图如图所示,它是有一条侧棱垂直于底面的四棱锥.其中底面ABCD是边长为6的正方形,高为CC1=6,故所求体积是(4分)

  (Ⅱ)依题意,正方体的体积是原四棱锥体积的3倍,故用3个这样的四棱锥可以拼成一个棱长为6的正方体,其拼法如图所示.

  证明:∵面ABCD、面ABB1A1、面AA1D1D为全等的正方形,于是

  故所拼图形成立.(4分)

  (Ⅲ)方法一:设B1E,BC的延长线交于点G,连结GA,在底面ABC内作BH⊥AG,垂足为H,连结HB1,则B1H⊥AG,故∠B1HB为平面AB1E与平面ABC所成二面角或其补角的平面角.

  在Rt△ABG中,,则

  

  ,故平面AB1E与平面ABC所成二面角的余弦值为.(4分)


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网